login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143972
Eigentriangle by rows, A143971 * (A108300 * 0^(n-k)); 1<=k<=1
1
1, 4, 1, 7, 4, 5, 10, 7, 20, 16, 13, 10, 35, 64, 53, 16, 13, 50, 112, 212, 175, 19, 16, 65, 160, 371, 700, 578, 22, 19, 80, 208, 530, 1225, 2312, 1909, 25, 28, 95, 256, 689, 1750, 4046, 7636, 6305, 28, 25, 110, 304, 848, 2275, 5780, 23363, 25220, 20824
OFFSET
1,2
COMMENTS
Right border = A108300: (1, 1, 5, 16, 53, 175, 578,...). Row sums = (1, 5, 16, 53, 175, 578,...) = INVERT transform of (1, 4, 7, 10,...).
Sum of n-th row terms = rightmost term of next row.
Comment in A108300 states that (5, 16, 53, 175,...) is related to the numbers of hydrogen bonds in hydrocarbons.
FORMULA
Eigentriangle by rows, A143971 * (A108300 * 0^(n-k)); 1<=k<=1
Triangle A143971 = (1; 4,1; 7,4,1; 10,7,4,1;...). A108300 * 0^(n-k) = an infinite lower triangular matrix with A108300 (1, 1, 5, 16, 53, 175, 578, 1909,...) in the main diagonal and the rest zeros. By rows, = termwise products of n-th row terms of A143971 and n terms of A108300.
EXAMPLE
First few rows of the triangle =
1;
4, 1;
7, 4, 5;
10, 7, 10, 16;
13, 10, 35, 64, 53;
16, 13, 50, 112, 212, 175;
19, 16, 65, 160, 371, 700, 578;
22, 19, 80, 208, 530, 1225, 2312, 1909;
25, 22, 95, 256, 689, 1750, 4046, 7636, 6305;
... Example: row 4 = (10, 7, 20, 16) = termwise products of (10, 7, 4, 1) and (1, 1, 5, 16) = (10*1, 7*1, 4*5, 1*16), where (10, 7, 4, 1) = row 4 of triangle A143971.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Sep 06 2008
STATUS
approved