This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052924 Expansion of g.f.: (1-x)/(1 - 3*x - x^2). 10

%I

%S 1,2,7,23,76,251,829,2738,9043,29867,98644,325799,1076041,3553922,

%T 11737807,38767343,128039836,422886851,1396700389,4612988018,

%U 15235664443,50319981347,166195608484,548906806799,1812916028881

%N Expansion of g.f.: (1-x)/(1 - 3*x - x^2).

%C Euler encountered this sequence when finding the largest root of z^2 - 3z - 1 = 0. - V. Frederick Rickey (fred-rickey(AT)usma.edu), Aug 20 2003

%C Let M = a triangle with the Pell series A000129 (1, 2, 5, 12, ...) in each column, with the leftmost column shifted upwards one row. A052924 starting (1, 2, 7, 23, ...) = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - _Gary W. Adamson_, Jul 31 2010

%C a(n) is the number of compositions of n when there are 2 types of 1 and 3 types of other natural numbers. - _Milan Janjic_, Aug 13 2010

%C Equals partial sums of A108300 prefaced with a 1: (1, 1, 5, 16, 53, 175, 578, ...). - _Gary W. Adamson_, Feb 15 2012

%D L. Euler, Introductio in analysin infinitorum, 1748, section 338. English translation by John D. Blanton, Introduction to Analysis of the Infinite, 1988, Springer, p. 286.

%H G. C. Greubel, <a href="/A052924/b052924.txt">Table of n, a(n) for n = 0..1000</a>

%H Sergio Falcon, <a href="http://dx.doi.org/10.1016/j.chaos.2016.03.038">The k-Fibonacci difference sequences</a>, Chaos, Solitons & Fractals, Volume 87, June 2016, Pages 153-157.

%H Sergio Falcon and Ángel Plaza, <a href="http://dx.doi.org/10.1016/j.chaos.2006.09.022">On the Fibonacci k-numbers</a>, Chaos, Solitons & Fractals 2007; 32(5): 1615-24.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=909">Encyclopedia of Combinatorial Structures 909</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,1).

%F a(n) = 3*a(n-1) + a(n-2).

%F a(n) = Sum_{alpha=RootOf(-1+3*x+x^2)} (1/13)*(1+5*alpha)*alpha^(-1-n).

%F With offset 1: a(1)=1; for n > 1, a(n) = Sum_{i=1..3n-4} a(ceiling(i/3))). - _Benoit Cloitre_, Jan 04 2004

%F Binomial transform of A006130. a(n) = (1/2 - sqrt(13)/26)*(3/2 - sqrt(13)/2)^n + (1/2 + sqrt(13)/26)*(3/2 + sqrt(13)/2)^n. - _Paul Barry_, Jul 20 2004

%F From _Creighton Dement_, Nov 04 2004: (Start)

%F a(n) = A006190(n+1) - A006190(n);

%F 4*a(n) = 9*A006190(n+1) - A006497(n+1) - 2*A003688(n+1). (End)

%F Numerators in continued fraction [1, 2, 3, 3, 3, ...], where the latter = 0.69722436226...; the length of an inradius of a right triangle with legs 2 and 3. - _Gary W. Adamson_, Dec 19 2007

%F If p=2, p[i]=3, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1) = det A. - _Milan Janjic_, Apr 29 2010

%F a(n) = A006190(n) + A003688(n). - _R. J. Mathar_, Jul 06 2012

%p spec:= [S,{S=Sequence(Prod(Sequence(Z),Union(Z,Z,Prod(Z,Z))))}, unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);

%p seq(coeff(series((1-x)/(1-3*x-x^2), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Oct 16 2019

%t CoefficientList[Series[(1-x)/(1-3*x-x^2), {x,0,30}], x] (* _G. C. Greubel_, Jun 09 2019 *)

%o (PARI) Vec((1-x)/(1-3*x-x^2)+O(x^30)) \\ _Charles R Greathouse IV_, Nov 20 2011

%o (MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-3*x-x^2) )); // _G. C. Greubel_, Jun 09 2019

%o (Sage) ((1-x)/(1-3*x-x^2)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 09 2019

%o (GAP) a:=[1,2];; for n in [3..30] do a[n]:=3*a[n-1]+a[n-2]; od; a; # _G. C. Greubel_, Jun 09 2019

%Y Cf. A108300.

%K easy,nonn

%O 0,2

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _James A. Sellers_, Jun 06 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 06:06 EST 2019. Contains 329217 sequences. (Running on oeis4.)