login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249402
The number of 3-alternating permutations of [n].
6
1, 1, 1, 2, 3, 11, 40, 99, 589, 3194, 11259, 92159, 666160, 3052323, 31799041, 287316122, 1620265923, 20497038755, 222237912664, 1488257158851, 22149498351205, 280180369563194, 2172534146099019, 37183508549366519, 537546603651987424, 4736552519729393091
OFFSET
0,4
COMMENTS
A sequence a(1),a(2),... is called k-alternating if a(i) > a(i+1) iff i=1 (mod k). a(n) gives the number of 3-alternating permutations of [n].
LINKS
R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240, page 17.
EXAMPLE
The a(4)=3 3-alternating permutations of [4] are: [2 1 3 4 ] [3 1 2 4 ] and [4 1 2 3 ].
The a(5)=11 3-alternating permutations of [5] are: [2 1 3 5 4 ] [2 1 4 5 3 ] [3 1 2 5 4 ] [3 1 4 5 2 ] [3 2 4 5 1 ] [4 1 2 5 3 ] [4 1 3 5 2 ] [4 2 3 5 1 ] [5 1 2 4 3 ] [5 1 3 4 2 ] and [5 2 3 4 1 ].
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=1, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Oct 27 2014
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, If[t == 1, Sum[b[u-j, o+j-1, Mod[t+1, 3]], {j, 1, u}], Sum[b[u+j-1, o-j, Mod[t+1, 3]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 22 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A065619 (2-alternating).
Cf. A178963, A249583 (alternative definitions of 3-alternating permutations).
Column k=3 of A250261.
Sequence in context: A007756 A374312 A000280 * A046224 A081173 A179266
KEYWORD
nonn
AUTHOR
R. J. Mathar, Oct 27 2014
EXTENSIONS
a(16)-a(25) from Alois P. Heinz, Oct 27 2014
STATUS
approved