Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Mar 24 2017 00:47:57
%S 1,1,1,2,3,11,40,99,589,3194,11259,92159,666160,3052323,31799041,
%T 287316122,1620265923,20497038755,222237912664,1488257158851,
%U 22149498351205,280180369563194,2172534146099019,37183508549366519,537546603651987424,4736552519729393091
%N The number of 3-alternating permutations of [n].
%C A sequence a(1),a(2),... is called k-alternating if a(i) > a(i+1) iff i=1 (mod k). a(n) gives the number of 3-alternating permutations of [n].
%H Alois P. Heinz, <a href="/A249402/b249402.txt">Table of n, a(n) for n = 0..500</a>
%H R. P. Stanley, <a href="http://arxiv.org/abs/0912.4240">A survey of alternating permutations</a>, arXiv:0912.4240, page 17.
%e The a(4)=3 3-alternating permutations of [4] are: [2 1 3 4 ] [3 1 2 4 ] and [4 1 2 3 ].
%e The a(5)=11 3-alternating permutations of [5] are: [2 1 3 5 4 ] [2 1 4 5 3 ] [3 1 2 5 4 ] [3 1 4 5 2 ] [3 2 4 5 1 ] [4 1 2 5 3 ] [4 1 3 5 2 ] [4 2 3 5 1 ] [5 1 2 4 3 ] [5 1 3 4 2 ] and [5 2 3 4 1 ].
%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
%p `if`(t=1, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
%p add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
%p end:
%p a:= n-> b(0, n, 0):
%p seq(a(n), n=0..35); # _Alois P. Heinz_, Oct 27 2014
%t b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, If[t == 1, Sum[b[u-j, o+j-1, Mod[t+1, 3]], {j, 1, u}], Sum[b[u+j-1, o-j, Mod[t+1, 3]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Jun 22 2015, after _Alois P. Heinz_ *)
%Y Cf. A065619 (2-alternating).
%Y Cf. A178963, A249583 (alternative definitions of 3-alternating permutations).
%Y Column k=3 of A250261.
%K nonn
%O 0,4
%A _R. J. Mathar_, Oct 27 2014
%E a(16)-a(25) from _Alois P. Heinz_, Oct 27 2014