login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A250261
Number A(n,k) of permutations p of [n] such that p(i) > p(i+1) iff i = 1 + k*m for some m >= 0; square array A(n,k), n>=0, k>=0, read by antidiagonals.
10
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 5, 1, 5, 1, 1, 1, 2, 3, 16, 1, 6, 1, 1, 1, 2, 3, 11, 61, 1, 7, 1, 1, 1, 2, 3, 4, 40, 272, 1, 8, 1, 1, 1, 2, 3, 4, 19, 99, 1385, 1, 9, 1, 1, 1, 2, 3, 4, 5, 78, 589, 7936, 1, 10, 1, 1, 1, 2, 3, 4, 5, 29, 217, 3194, 50521, 1, 11
OFFSET
0,10
COMMENTS
A(n,0) = A(n,k) for k>=n-1 and n>0.
LINKS
J. M. Luck, On the frequencies of patterns of rises and falls, arXiv:1309.7764, 2013
A. Mendes and J. Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page
R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240, 2009
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 1, 2, 2, 2, 2, 2, 2, 2, ...
3, 1, 5, 3, 3, 3, 3, 3, 3, ...
4, 1, 16, 11, 4, 4, 4, 4, 4, ...
5, 1, 61, 40, 19, 5, 5, 5, 5, ...
6, 1, 272, 99, 78, 29, 6, 6, 6, ...
7, 1, 1385, 589, 217, 133, 41, 7, 7, ...
MAPLE
b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1,
`if`(t=1, add(b(u-j, o+j-1, irem(t+1, k), k), j=1..u),
add(b(u+j-1, o-j, irem(t+1, k), k), j=1..o)))
end:
A:= (n, k)-> b(0, n, 0, `if`(k=0, n, k)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[u_, o_, t_, k_] := b[u, o, t, k] = If[u+o == 0, 1, If[t == 1, Sum[ b[u-j, o+j-1, Mod[t+1, k], k], {j, 1, u}], Sum[ b[u+j-1, o-j, Mod[t+1, k], k], {j, 1, o}] ] ] ; A[n_, k_] := b[0, n, 0, If[k == 0, n, k]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 03 2015, after Alois P. Heinz *)
CROSSREFS
A(n+3,n+1) = A028387(n).
Sequence in context: A175010 A107454 A371212 * A063669 A306489 A319734
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Nov 15 2014
STATUS
approved