OFFSET
0,10
COMMENTS
A(n,0) = A(n,k) for k>=n-1 and n>0.
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
J. M. Luck, On the frequencies of patterns of rises and falls, arXiv:1309.7764, 2013
A. Mendes and J. Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page
R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240, 2009
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 1, 2, 2, 2, 2, 2, 2, 2, ...
3, 1, 5, 3, 3, 3, 3, 3, 3, ...
4, 1, 16, 11, 4, 4, 4, 4, 4, ...
5, 1, 61, 40, 19, 5, 5, 5, 5, ...
6, 1, 272, 99, 78, 29, 6, 6, 6, ...
7, 1, 1385, 589, 217, 133, 41, 7, 7, ...
MAPLE
b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1,
`if`(t=1, add(b(u-j, o+j-1, irem(t+1, k), k), j=1..u),
add(b(u+j-1, o-j, irem(t+1, k), k), j=1..o)))
end:
A:= (n, k)-> b(0, n, 0, `if`(k=0, n, k)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[u_, o_, t_, k_] := b[u, o, t, k] = If[u+o == 0, 1, If[t == 1, Sum[ b[u-j, o+j-1, Mod[t+1, k], k], {j, 1, u}], Sum[ b[u+j-1, o-j, Mod[t+1, k], k], {j, 1, o}] ] ] ; A[n_, k_] := b[0, n, 0, If[k == 0, n, k]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 03 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Nov 15 2014
STATUS
approved