login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306489
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of 1/(1 - Sum_{d|k} x^d).
0
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 5, 1, 1, 1, 1, 3, 3, 8, 1, 1, 1, 2, 1, 6, 4, 13, 1, 1, 1, 1, 4, 1, 10, 6, 21, 1, 1, 1, 2, 1, 7, 2, 18, 9, 34, 1, 1, 1, 1, 3, 1, 13, 3, 31, 13, 55, 1, 1, 1, 2, 2, 6, 1, 25, 4, 55, 19, 89, 1, 1, 1, 1, 3, 3, 10, 1, 46, 5, 96, 28, 144, 1
OFFSET
0,9
COMMENTS
A(n,k) is the number of compositions (ordered partitions) of n into divisors of k.
FORMULA
G.f. of column k: 1/(1 - Sum_{d|k} x^d).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 1, 2, 1, 2, ...
1, 3, 2, 3, 1, 4, ...
1, 5, 3, 6, 1, 7, ...
1, 8, 4, 10, 2, 13, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[1/(1 - Sum[x^d, {d, Divisors[k]}]), {x, 0, n}]][i - n + 1], {i, 0, 12}, {n, 0, i}] // Flatten
CROSSREFS
Columns k=1..7 give A000012, A000045 (for n > 0), A000930, A060945, A003520, A079958, A005709.
Sequence in context: A371212 A250261 A063669 * A319734 A211005 A162154
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Feb 19 2019
STATUS
approved