login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306492
Numbers k such that sigma(k) - 3k is prime.
1
3600, 17424, 22500, 32400, 72900, 291600, 345744, 360000, 476100, 518400, 562500, 656100, 685584, 756900, 1040400, 1382976, 1411344, 1742400, 1904400, 1988100, 2073600, 2250000, 2340900, 2624400, 3027600, 3111696, 4161600, 4284900, 5760000, 6051600, 6170256, 6200100, 6969600
OFFSET
1,1
LINKS
EXAMPLE
The divisors of 3600 are {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36, 40, 45, 48, 50, 60, 72, 75, 80, 90, 100, 120, 144, 150, 180, 200, 225, 240, 300, 360, 400, 450, 600, 720, 900, 1200, 1800, 3600}. sigma(3600) - 3 * 3600 = 12493 - 10800 = 1693, which is prime.
MAPLE
with(numtheory): b := []: for n from 3 to 1000000 do t1 := divisors(n); t2 := convert(t1, list); t3 := add(t2[i], i=1..nops(t2)); if isprime(t3-3*n) then b := [op(b), n]; fi; od: b;
MATHEMATICA
f[n_]:=Plus@@Divisors[n]-3*n; lst={}; Do[a=f[n]; If[PrimeQ[a], AppendTo[lst, n]], {n, 9!}]; lst
Select[Range[1000000], DivisorSigma[1, #] > 3*# && PrimeQ[DivisorSigma[1, #] - 3*#] &] (* Vaclav Kotesovec, Feb 23 2019 *)
PROG
(PARI) isok(n) = isprime(sigma(n) - 3*n); \\ Michel Marcus, Feb 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Jan Koornstra, Feb 19 2019
EXTENSIONS
More terms from Michel Marcus, Feb 19 2019
STATUS
approved