login
A175752
Numbers with 45 divisors.
4
3600, 7056, 8100, 15876, 17424, 19600, 20736, 22500, 24336, 39204, 41616, 48400, 51984, 54756, 67600, 76176, 86436, 93636, 94864, 99225, 104976, 115600, 116964, 121104, 122500, 132496, 138384, 144400, 147456, 160000, 171396, 197136
OFFSET
1,1
COMMENTS
Numbers of the forms p^44, p^14*q^2, p^8*q^4 (squares of A189988) and p^4*q^2*r^2 (A179746), where p, q, and r are distinct primes.
FORMULA
A000005(a(n)) = 45.
Sum_{n>=1} 1/a(n) = (P(2)^2*P(4) - P(4)^2)/2 - P(2)*P(6) + P(8) + P(2)*P(14) - P(16) + P(4)*P(8) - P(12) + P(44) = 0.00133023..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022
MATHEMATICA
Select[Range[400000], DivisorSigma[0, #]==45&] (* Vladimir Joseph Stephan Orlovsky, May 06 2011 *)
PROG
(PARI) is(n)=numdiv(n)==45 \\ Charles R Greathouse IV, Jun 19 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Aug 27 2010
STATUS
approved