login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179746 Numbers of the form p^4*q^2*r^2 where p, q, and r are distinct primes. 4
3600, 7056, 8100, 15876, 17424, 19600, 22500, 24336, 39204, 41616, 48400, 51984, 54756, 67600, 76176, 86436, 93636, 94864, 99225, 115600, 116964, 121104, 122500, 132496, 138384, 144400, 171396, 197136, 211600, 226576, 240100, 242064, 245025 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Numbers k such that tau(k^2)/tau(k) = 5 where tau(n) is the number of divisors of n (A000005). - Bernard Schott, Nov 27 2020
LINKS
Will Nicholes, Prime Signatures
FORMULA
Sum_{n>=1} 1/a(n) = (P(2)^2*P(4) - P(4)^2)/2 - P(2)*P(6) + P(8) = 0.00125114..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022
a(n) = A085987(n)^2. - R. J. Mathar, May 05 2023
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 2, 4}; Select[Range[200000], f]
PROG
(PARI) list(lim)=my(v=List(), t1, t2); forprime(p=2, (lim\36)^(1/4), t1=p^4; forprime(q=2, sqrt(lim\t1), if(p==q, next); t2=t1*q^2; forprime(r=q+1, sqrt(lim\t2), if(p==r, next); listput(v, t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
CROSSREFS
Subsequence of A217584.
Cf. A189988 (tau(k^2)/tau(k) = 3).
Sequence in context: A216682 A348521 A175752 * A096472 A306492 A364990
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 16:13 EST 2023. Contains 367612 sequences. (Running on oeis4.)