login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179748
Triangle T(n,k) read by rows. T(n,1)=1, k > 1: T(n,k) = Sum_{i=1..k-1} T(n-i,k-1).
6
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 5, 4, 1, 1, 1, 2, 6, 9, 5, 1, 1, 1, 2, 6, 15, 14, 6, 1, 1, 1, 2, 6, 20, 29, 20, 7, 1, 1, 1, 2, 6, 23, 49, 49, 27, 8, 1, 1, 1, 2, 6, 24, 71, 98, 76, 35, 9, 1, 1, 1, 2, 6, 24, 91, 169, 174, 111, 44, 10, 1, 1, 1, 2, 6, 24, 106, 259, 343, 285, 155, 54, 11, 1
OFFSET
1,9
COMMENTS
Recurrence is half of the recurrence for divisibility in A051731. That is, without subtracting (Sum_{i=1..k-1} T(n-i,k)).
Rows tend to factorial numbers.
Row sums are A177510.
FORMULA
T(n,1)=1, k > 1: T(n,k) = Sum_{i=1..k-1} T(n-i,k-1).
EXAMPLE
Triangle begins:
01: 1;
02: 1, 1;
03: 1, 1, 1;
04: 1, 1, 2, 1;
05: 1, 1, 2, 3, 1;
06: 1, 1, 2, 5, 4, 1;
07: 1, 1, 2, 6, 9, 5, 1;
08: 1, 1, 2, 6, 15, 14, 6, 1;
09: 1, 1, 2, 6, 20, 29, 20, 7, 1;
10: 1, 1, 2, 6, 23, 49, 49, 27, 8, 1;
11: 1, 1, 2, 6, 24, 71, 98, 76, 35, 9, 1;
12: 1, 1, 2, 6, 24, 91, 169, 174, 111, 44, 10, 1;
13: 1, 1, 2, 6, 24, 106, 259, 343, 285, 155, 54, 11, 1;
14: 1, 1, 2, 6, 24, 115, 360, 602, 628, 440, 209, 65, 12, 1;
15: 1, 1, 2, 6, 24, 119, 461, 961, 1230, 1068, 649, 274, 77, 13, 1;
16: 1, 1, 2, 6, 24, 120, 551, 1416, 2191, 2298, 1717, 923, 351, 90, 14, 1;
17: 1, 1, 2, 6, 24, 120, 622, 1947, 3606, 4489, 4015, 2640, 1274, 441, 104, 15, 1;
...
PROG
(Excel cell formula European dot comma style) =if(column()=1; 1; if(row()>=column(); sum(indirect(address(row()-column()+1; column()-1; 4)&":"&address(row()-1; column()-1; 4); 4)); 0))
(Sage)
@CachedFunction
def T(n, k): # A179748
if n == 0: return int(k==0);
if k == 1: return int(n>=1);
return sum( T(n-i, k-1) for i in [1..k-1] );
for n in [1..15]: print([ T(n, k) for k in [1..n] ])
# Joerg Arndt, Mar 24 2014
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, Jul 26 2010
STATUS
approved