login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179744
a(0) = 1, a(n) = 3*2^(n-1) - n for n>0.
1
1, 2, 4, 9, 20, 43, 90, 185, 376, 759, 1526, 3061, 6132, 12275, 24562, 49137, 98288, 196591, 393198, 786413, 1572844, 3145707, 6291434, 12582889, 25165800, 50331623, 100663270, 201326565, 402653156, 805306339, 1610612706, 3221225441
OFFSET
0,2
COMMENTS
Equals row sums of triangle A179743.
Essentially the same as A133095 and A123720. - R. J. Mathar, Jul 26 2010
FORMULA
a(0) = 1, a(1) = 2; a(n) = 2*a(n-1) + (n-2) for n>1.
G.f. 1-x*(2-4*x+3*x^2) / ( (2*x-1)*(x-1)^2 ). - R. J. Mathar, May 03 2013
EXAMPLE
a(5) = 43 = 2*a(4) + 3 = 2*20 + 3
a(5) = 43 = sum of row 5 terms, triangle A179743: (1 + 5 + 8 + 12 + 16 + 1).
MATHEMATICA
a[0] = 1; a[1] = 2; a[n_] := a[n] = 2 a[n - 1] + (n - 2); Array[a, 35, 0] (* Robert G. Wilson v, Aug 03 2010 *)
PROG
(PARI) a(n)=3*2^n\2-n \\ Charles R Greathouse IV, May 03 2013
CROSSREFS
Cf. A179743.
Sequence in context: A350092 A175104 A123720 * A266930 A034007 A109975
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jul 25 2010
EXTENSIONS
More terms from Robert G. Wilson v, Aug 03 2010
STATUS
approved