login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123720
a(n) = 2^n + 2^(n-1) - n.
10
2, 4, 9, 20, 43, 90, 185, 376, 759, 1526, 3061, 6132, 12275, 24562, 49137, 98288, 196591, 393198, 786413, 1572844, 3145707, 6291434, 12582889, 25165800, 50331623, 100663270, 201326565, 402653156, 805306339, 1610612706, 3221225441
OFFSET
1,1
FORMULA
a(n) = A007283(n-1) - n.
O.g.f.: x(2 - 4x + 3x^2)/((1-x)^2*(1-2x)). - R. J. Mathar, Jun 08 2008
E.g.f.: (1/2)*(-3 - 2*x*exp(x) + 3*exp(2*x)). - G. C. Greubel, Oct 26 2017
MATHEMATICA
lst={}; Do[AppendTo[lst, 2^n+2^(n-1)-n], {n, 5!}]; lst (* and/or *) s=2; lst={s}; Do[s+=s+n++; AppendTo[lst, s], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)
Table[2^n + 2^{n-1) - n, {n, 1, 50}] (* or *) LinearRecurrence[{4, -5, 2}, {2, 4, 9}, 50] (* G. C. Greubel, Oct 26 2017 *)
PROG
(PARI) for(n=1, 31, print1(2^n+2^(n-1)-n, ", "))
(Magma) [2^n + 2^(n-1) - n: n in [1..40] ]; // Vincenzo Librandi, May 18 2011
CROSSREFS
Cf. A007283.
Sequence in context: A018103 A350092 A175104 * A179744 A266930 A034007
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Oct 09 2006
STATUS
approved