login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133095
Row sums of triangle A133094.
3
1, 4, 9, 20, 43, 90, 185, 376, 759, 1526, 3061, 6132, 12275, 24562, 49137, 98288, 196591, 393198, 786413, 1572844, 3145707, 6291434, 12582889, 25165800, 50331623, 100663270, 201326565, 402653156, 805306339, 1610612706, 3221225441, 6442450912, 12884901855, 25769803742, 51539607517
OFFSET
1,2
FORMULA
Binomial transform of [1, 3, 2, 4, 2, 4, 2, 4, ...].
From G. C. Greubel, Oct 21 2017: (Start)
a(n) = 3*2^(n-1) - n, for n >= 2.
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: x*(1 - 2*x^2 + 2*x^3)/((1-2*x)*(1-x)^2).
E.g.f.: (3*exp(2*x) - 2*x*exp(x) - 2*x - 3)/2. (End)
a(n) = A123720(n) for n >= 2. - Georg Fischer, Nov 02 2018
EXAMPLE
a(4) = 20 = sum of row 4 terms of triangle A133094: (7 + 7 + 5 + 1).
a(4) = 20 = (1, 3, 3, 1) dot (1, 3, 2, 4) = (1 + 9 + 6 + 4).
MATHEMATICA
Join[{1}, Table[ 3*2^(n - 1) - n, {n, 2, 50}]] (* G. C. Greubel, Oct 21 2017 *)
LinearRecurrence[{4, -5, 2}, {1, 4, 9, 20}, 50] (* Harvey P. Dale, Aug 09 2022 *)
PROG
(PARI) concat(1, for(n=1, 50, print1(3*2^(n - 1) - n, ", "))) \\ G. C. Greubel, Oct 21 2017
(Magma) [1] cat [3*2^(n - 1) - n: n in [2..50]]; // G. C. Greubel, Oct 21 2017
CROSSREFS
Sequence in context: A051136 A156321 A276778 * A132175 A019493 A019492
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Sep 09 2007
EXTENSIONS
Terms a(11) onward added by G. C. Greubel, Oct 21 2017
STATUS
approved