login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019492
Pisot sequence T(4,9), a(n) = floor(a(n-1)^2/a(n-2)).
2
4, 9, 20, 44, 96, 209, 455, 990, 2154, 4686, 10194, 22176, 48241, 104942, 228287, 496607, 1080300, 2350043, 5112193, 11120867, 24191904, 52626132, 114480851, 249037213, 541745915, 1178493097, 2563648273, 5576861234, 12131688091, 26390804748, 57409535261
OFFSET
0,1
COMMENTS
Satisfies the linear recurrence a(n) = 3*a(n-1) - 4*a(n-3) + a(n-6) just for n <= 10 (see A019493).
LINKS
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
MATHEMATICA
RecurrenceTable[{a[0] == 4, a[1] == 9, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *)
nxt[{a_, b_}]:={b, Floor[b^2/a]}; NestList[nxt, {4, 9}, 40][[All, 1]] (* Harvey P. Dale, Aug 22 2017 *)
PROG
(Magma) Iv:=[4, 9]; [n le 2 select Iv[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 04 2016
(PARI) pisotT(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
a
}
pisotT(50, 4, 9) \\ Colin Barker, Jul 29 2016
CROSSREFS
See A008776 for definitions of Pisot sequences.
Cf. A019493.
Sequence in context: A133095 A132175 A019493 * A020708 A345192 A109110
KEYWORD
nonn
AUTHOR
STATUS
approved