OFFSET
0,1
COMMENTS
Satisfies the linear recurrence a(n) = 3*a(n-1) - 4*a(n-3) + a(n-6) just for n <= 10 (see A019493).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
MATHEMATICA
RecurrenceTable[{a[0] == 4, a[1] == 9, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *)
nxt[{a_, b_}]:={b, Floor[b^2/a]}; NestList[nxt, {4, 9}, 40][[All, 1]] (* Harvey P. Dale, Aug 22 2017 *)
PROG
(Magma) Iv:=[4, 9]; [n le 2 select Iv[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 04 2016
(PARI) pisotT(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
a
}
pisotT(50, 4, 9) \\ Colin Barker, Jul 29 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved