login
A019494
Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(4,10).
1
4, 10, 24, 57, 135, 319, 753, 1777, 4193, 9893, 23341, 55069, 129925, 306533, 723205, 1706261, 4025589, 9497589, 22407701, 52866581, 124728341, 294272085, 694277333, 1638011349, 3864566869, 9117688405, 21511399509, 50751932757, 119739242325, 282501283669
OFFSET
0,1
COMMENTS
Not to be confused with the Pisot T(4,10) sequence, which is A020748. - R. J. Mathar, Feb 13 2016
LINKS
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
Empirical G.f.: (4-2*x+2*x^2-3*x^3)/(1-3*x+2*x^2-2*x^3+2*x^4). - Colin Barker, Feb 04 2012
a(n+1) = ceiling(a(n)^2/a(n-1))-1 for n>0. - Bruno Berselli, Feb 15 2016
MATHEMATICA
T[a_, b_, n_] := Block[{s = {a, b}, k}, Do[k = Ceiling[b Last@ s/a]; While[k/s[[i - 1]] >= s[[i - 1]]/s[[i - 2]], k--]; AppendTo[s, k], {i, 3, n}]; s]; T[4, 10, 20] (* or *)
a = {4, 10}; Do[AppendTo[a, Ceiling[a[[n - 1]]^2/a[[n - 2]]] - 1], {n, 3, 27}]; a (* Michael De Vlieger, Feb 15 2016 *)
PROG
(PARI) T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
T(4, 10, 30) \\ Colin Barker, Feb 16 2016
CROSSREFS
Sequence in context: A079859 A298802 A118871 * A192886 A079844 A080617
KEYWORD
nonn
AUTHOR
STATUS
approved