login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192886
Expansion of x^4*(1 - x)^2*(1 - 3*x^2 - 2*x^3 + x^4 - x^5)/(1 - 2*x)^3.
2
0, 0, 0, 0, 1, 4, 10, 24, 58, 135, 309, 697, 1554, 3432, 7520, 16368, 35424, 76288, 163584, 349440, 743936, 1579008, 3342336, 7057408, 14868480, 31260672, 65601536, 137428992, 287440896, 600309760, 1251999744, 2607808512, 5425332224, 11274289152
OFFSET
0,6
LINKS
Toufik Mansour, Sherry H. F. Yan and Laura L. M. Yang, Counting occurrences of 231 in an involution, Discrete Mathematics 306 (2006), pages 564-572 (see Corollary 3.4)
FORMULA
G.f.: x^4*(1-2*x-2*x^2+4*x^3+2*x^4-5*x^5+3*x^6-x^7)/(1-6*x+12*x^2-8*x^3).
For n>8, a(n) = 2^(n-12)*(n^2+137*n-234). - Bruno Berselli, May 24 2012
MATHEMATICA
CoefficientList[Series[x^4(1-x)^2(1-3x^2-2x^3+x^4-x^5)/(1-2x)^3, {x, 0, 33}], x] (* Bruno Berselli, May 28 2012 *)
PROG
(PARI) Vec(x^4*(1-x)^2*(1-3*x^2-2*x^3+x^4-x^5)/(1-2*x)^3+O(x^34)) \\ show terms starting with 1. \\ Bruno Berselli, May 28 2012
(Maxima) makelist(coeff(taylor(x^4*(1-x)^2*(1-3*x^2-2*x^3+x^4-x^5)/(1-2*x)^3, x, 0, n), x, n), n, 0, 33); /* Bruno Berselli, May 28 2012 */
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0] cat Coefficients(R!( x^4*(1-2*x-2*x^2+4*x^3+2*x^4-5*x^5+3*x^6-x^7)/(1-6*x +12*x^2-8*x^3) )); // G. C. Greubel, Jan 09 2019
(Sage) (x^4*(1-2*x-2*x^2+4*x^3+2*x^4-5*x^5+3*x^6-x^7)/(1-6*x +12*x^2- 8*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jan 09 2019
(GAP) Concatenation([0, 0, 0, 0, 1, 4, 10, 24, 58], List([9..40], n -> 2^(n-12)*(n^2+137*n-234))); # G. C. Greubel, Jan 09 2019
CROSSREFS
Cf. A212330.
Sequence in context: A298802 A118871 A019494 * A079844 A080617 A080628
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, Jul 11 2011
STATUS
approved