OFFSET
0,1
COMMENTS
See A192872.
a(n) is also the area of the triangle with vertices at (F(n),F(n+1)), (F(n+1),F(n)), and (F(n+3),F(n+4)) where F(n) = A000045(n). - J. M. Bergot, May 22 2014
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = Fibonacci(n-1) * Fibonacci(n+3). - Gary Detlefs, Oct 19 2011
a(n) = Fibonacci(n+1)^2 + (-1)^n. - Gary Detlefs, Oct 19 2011
G.f.: ( 2-4*x+x^2 ) / ( (1+x)*(1-3*x+x^2) ). - R. J. Mathar, May 07 2014
a(n) = (2^(-1-n)*(7*(-1)^n*2^(1+n) + (3-sqrt(5))^(1+n) + (3+sqrt(5))^(1+n)))/5. - Colin Barker, Sep 29 2016
From Amiram Eldar, Oct 06 2020: (Start)
Sum_{n>=2} 1/a(n) = 7/18.
Sum_{n>=2} (-1)^n/a(n) = (4/phi - 13/6)/3, where phi is the golden ratio (A001622). (End)
a(n) = a(-2-n) for all n in Z. - Michael Somos, Mar 18 2022
EXAMPLE
G.f. = 2 + 5*x^2 + 8*x^3 + 26*x^4 + 63*x^5 + 170*x^6 + ... - Michael Somos, Mar 18 2022
MAPLE
with(combinat):seq(fibonacci(n-1)*fibonacci(n+3), n=0..27): # Gary Detlefs, Oct 19 2011
MATHEMATICA
q = x^2; s = x + 1; z = 28;
p[0, x_] := 2; p[1, x_] := 3 x;
p[n_, x_] := p[n - 1, x]*x + p[n - 2, x]*x^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192883 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* minus A121646 *)
LinearRecurrence[{2, 2, -1}, {2, 0, 5}, 30] (* G. C. Greubel, Jan 09 2019 *)
a[ n_] := Fibonacci[n+1]^2 + (-1)^n; (* Michael Somos, Mar 18 2022 *)
PROG
(PARI) a(n) = round((2^(-1-n)*(7*(-1)^n*2^(1+n)+(3-sqrt(5))^(1+n)+(3+sqrt(5))^(1+n)))/5) \\ Colin Barker, Sep 29 2016
(PARI) Vec((2+x^2-4*x)/((1+x)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Sep 29 2016
(PARI) {a(n) = fibonacci(n+1)^2 + (-1)^n}; /* Michael Somos, Mar 18 2022 */
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( ( 2-4*x+x^2)/((1+x)*(1-3*x+x^2)) )); // G. C. Greubel, Jan 09 2019
(Sage) ((2-4*x+x^2 )/((1+x)*(1-3*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 09 2019
(GAP) a:=[2, 0, 5];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 09 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 12 2011
STATUS
approved