login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264299
T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change 0,1 0,-2 1,0 or -1,0.
13
1, 2, 0, 5, 9, 1, 10, 8, 20, 0, 16, 24, 89, 56, 1, 29, 177, 332, 192, 169, 0, 61, 288, 1952, 1672, 1413, 441, 1, 117, 944, 10449, 25080, 14881, 4352, 1258, 0, 212, 4209, 51825, 146688, 297721, 94320, 24781, 3520, 1, 401, 9944, 271385, 1346944, 3890569
OFFSET
1,2
COMMENTS
Table starts
.1.....2.......5........10.........16..........29..........61.........117
.0.....9.......8........24........177.........288.........944........4209
.1....20......89.......332.......1952.......10449.......51825......271385
.0....56.....192......1672......25080......146688.....1346944....13834555
.1...169....1413.....14881.....297721.....3890569....53407877...839565293
.0...441....4352.....94320....3654505....66462504..1659712320.45752436553
.1..1258...24781....727970...44552352..1510247849.59343473405
.0..3520...90112...5007568..542471200.28497437872
.1..9701..449665..36810037.6626768169
.0.27216.1781256.260065872
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2)
k=2: a(n) = a(n-1) +4*a(n-2) +5*a(n-3) -5*a(n-4) -5*a(n-5) +4*a(n-6) -a(n-7) -a(n-8)
k=3: [order 21]
Empirical for row n:
n=1: a(n) = a(n-1) +3*a(n-3) +a(n-4) +a(n-5) -3*a(n-6) -2*a(n-7) +a(n-9)
n=2: [order 35]
EXAMPLE
Some solutions for n=4 k=4
..5..0..1..2..9....5..0..4..2..9....5..0..4..8..9....2..0..1..8..9
.10.11..6..3..4....7..1..6..3..8...10..1..2..3.14....7.11..6..3..4
.15.16..7..8.19...15.10.14.12.13...12..6..7.18.13....5.16.14.18.13
.17.21.12.13.14...20.11.16.17.24...20.11.19.17.24...10.21.12.23.24
.22.20.24.18.23...22.23.21.18.19...15.16.21.22.23...15.20.17.22.19
CROSSREFS
Sequence in context: A192883 A011435 A139309 * A374063 A243445 A227569
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 11 2015
STATUS
approved