login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139309
Array by antidiagonals, sum of non-k-gonal numbers between consecutive k-gonal numbers.
1
0, 0, 2, 0, 5, 9, 0, 9, 26, 24, 0, 14, 51, 75, 50, 0, 20, 84, 153, 164, 90, 0, 27, 125, 258, 342, 305, 147, 0, 35, 174, 390, 584, 645, 510, 224, 0, 44, 231, 549, 890, 1110, 1089, 791, 324, 0, 54, 296, 735, 1260, 1700, 1884, 1701, 1160, 450, 0, 65, 369, 948, 1694
OFFSET
0,3
COMMENTS
The n=1 column is A000096(k) = n*(n+3)/2. The k=3 row is the sum of nontriangular numbers between successive triangular numbers (A006002) = the sum of n consecutive integers beginning with (n-th triangular number)+1 = (n*(n+1)^2)/2. The k=4 row is the sum of nonsquares between successive squares (A048395) = 2*n^3 + 2*n^2 + n. The k=5 row is the sum of non-pentagonal numbers between successive pentagonal numbers. The k-th row is the sum of non-k-gonal numbers between successive k-gonal numbers. Each column is a quadratic sequence. Each row is a cubic sequence.
FORMULA
T(k,n) = n(k-2)((k-2)n^2+1+2n)/2. - R. J. Mathar, Jun 12 2008
EXAMPLE
The array begins:
========================================================================
...|.n=0.|.n=1.|.n=2.|.n=3.|.n=4.|.n=5.|.n=6.|.n=7.|.n=8.|.n=9.|.in.OEIS
====|=====|=====|=====|=====|=====|=====|=====|=====|=====|=====|========
k=3.|..0..|..2..|..9..|..24.|..50.|..90.|.147.|.224.|.324.|.450.|.A006002
k=4.|..0..|..5..|.26..|..75.|.164.|.305.|.510.|.791.|1160.|1629.|.A048395
k=5.|..0..|..9..|.51..|.153.|.342.|.645.|1089.|...................not.yet
k=6.|..0..|.14..|.84..|.258.|.584.|...............................not.yet
k=7.|..0..|.20..|125..|.390.|.....................................not.yet
k=8.|..0..|.27..|174..|...........................................not.yet
k=9.|..0..|.35..|231..|...........................................not.yet
k=10|..0..|.44..|296..|...........................................not.yet
========================================================================
MAPLE
A139309 := proc(k, n) n*(k-2)*((k-2)*n^2+1+2*n)/2 ; end: for d from 3 to 16 do for n from 0 to d-3 do printf("%d, ", A139309(d-n, n)) ; od: od: # R. J. Mathar, Jun 12 2008
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Jonathan Vos Post, Jun 07 2008
EXTENSIONS
More terms from R. J. Mathar, Jun 12 2008
STATUS
approved