Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 03 2015 23:17:52
%S 0,0,2,0,5,9,0,9,26,24,0,14,51,75,50,0,20,84,153,164,90,0,27,125,258,
%T 342,305,147,0,35,174,390,584,645,510,224,0,44,231,549,890,1110,1089,
%U 791,324,0,54,296,735,1260,1700,1884,1701,1160,450,0,65,369,948,1694
%N Array by antidiagonals, sum of non-k-gonal numbers between consecutive k-gonal numbers.
%C The n=1 column is A000096(k) = n*(n+3)/2. The k=3 row is the sum of nontriangular numbers between successive triangular numbers (A006002) = the sum of n consecutive integers beginning with (n-th triangular number)+1 = (n*(n+1)^2)/2. The k=4 row is the sum of nonsquares between successive squares (A048395) = 2*n^3 + 2*n^2 + n. The k=5 row is the sum of non-pentagonal numbers between successive pentagonal numbers. The k-th row is the sum of non-k-gonal numbers between successive k-gonal numbers. Each column is a quadratic sequence. Each row is a cubic sequence.
%F T(k,n) = n(k-2)((k-2)n^2+1+2n)/2. - _R. J. Mathar_, Jun 12 2008
%e The array begins:
%e ========================================================================
%e ...|.n=0.|.n=1.|.n=2.|.n=3.|.n=4.|.n=5.|.n=6.|.n=7.|.n=8.|.n=9.|.in.OEIS
%e ====|=====|=====|=====|=====|=====|=====|=====|=====|=====|=====|========
%e k=3.|..0..|..2..|..9..|..24.|..50.|..90.|.147.|.224.|.324.|.450.|.A006002
%e k=4.|..0..|..5..|.26..|..75.|.164.|.305.|.510.|.791.|1160.|1629.|.A048395
%e k=5.|..0..|..9..|.51..|.153.|.342.|.645.|1089.|...................not.yet
%e k=6.|..0..|.14..|.84..|.258.|.584.|...............................not.yet
%e k=7.|..0..|.20..|125..|.390.|.....................................not.yet
%e k=8.|..0..|.27..|174..|...........................................not.yet
%e k=9.|..0..|.35..|231..|...........................................not.yet
%e k=10|..0..|.44..|296..|...........................................not.yet
%e ========================================================================
%p A139309 := proc(k,n) n*(k-2)*((k-2)*n^2+1+2*n)/2 ; end: for d from 3 to 16 do for n from 0 to d-3 do printf("%d,", A139309(d-n,n)) ; od: od: # _R. J. Mathar_, Jun 12 2008
%Y Cf. A000027, A000096, A006002, A048395.
%K easy,nonn,tabl
%O 0,3
%A _Jonathan Vos Post_, Jun 07 2008
%E More terms from _R. J. Mathar_, Jun 12 2008