login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139312
Characteristic function of the good primes (version 1).
0
0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0
OFFSET
2,1
COMMENTS
a(n)=1 if prime(n)^2 - prime(n-1)*prime(n+1) >=0, else a(n)=0.
FORMULA
a(n) = 1 if A056221(n-1)<=0, else a(n)=0.
MATHEMATICA
f[n_] := If[ Prime[n]^2 - Prime[n - 1]*Prime[n + 1] > 0, 1, 0]; Array[f, 105, 2] (*alternative formula: derived*) Solve[x^2 - (x - a)*(x + b) == 0, x]; a = -Prime[n - 1] + Prime[n]; b = -Prime[n] + Prime[n + 1]; f[n_] = If[-Prime[-1 + n] + 2 Prime[n] - Prime[1 + n] == 0, 0, a*b/(b - a)]; Table[ If[ f[n] > 0, 0, 1], {n, 2, 106}]
If[#[[2]]^2-(#[[1]]#[[3]])>=0, 1, 0]&/@Partition[Prime[Range[110]], 3, 1] (* Harvey P. Dale, Jan 25 2015 *)
PROG
(PARI) a(n)=my(p=prime(n)); p^2>=precprime(p-1)*nextprime(p+1) \\ Charles R Greathouse IV, Jun 24, 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jun 07 2008
EXTENSIONS
All entries corrected. - R. J. Mathar, Charles R Greathouse IV Robert G. Wilson v, Jun 16 2011
STATUS
approved