login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329960
Decimal expansion of least positive number x such that 1/(2 + sin x) + 1/(2 + cos x) = 1.
3
2, 0, 5, 8, 9, 4, 3, 1, 2, 8, 8, 7, 1, 1, 3, 8, 1, 2, 2, 8, 9, 4, 1, 5, 9, 4, 9, 4, 3, 3, 1, 2, 8, 4, 5, 8, 7, 8, 0, 5, 4, 1, 8, 5, 4, 2, 0, 0, 9, 8, 3, 2, 3, 6, 8, 8, 2, 0, 2, 2, 3, 3, 5, 1, 7, 9, 8, 6, 0, 7, 1, 4, 3, 9, 3, 0, 8, 6, 7, 9, 7, 0, 6, 0, 9, 8
OFFSET
1,1
FORMULA
Exact value: x = arccos(-(1/2) + 1/sqrt(2) - 1/2 sqrt(-1 + 2 sqrt(2)))
EXAMPLE
least positive x: 2.0589431288711381228941594943312845878...
MATHEMATICA
Solve[1/(2 + Sin[x]) + 1/(2 + Cos[x]) == 1, x]
u = ArcCos[-(1/2) + 1/Sqrt[2] - 1/2 Sqrt[-1 + 2 Sqrt[2]]]
u1 = N[u, 150]
RealDigits[u1, 10][[1]] (* A329960 *)
Plot[1/(2 + Sin[x]) + 1/(2 + Cos[x]) - 1, {x, -1, 3}]
CROSSREFS
Sequence in context: A334059 A133446 A011122 * A085009 A192883 A011435
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, Jan 02 2020
STATUS
approved