OFFSET
0,5
COMMENTS
Number of configurations with k connected components (consisting of domino matchings) in the game of memory played on the path of length 2n, see [Young].
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Donovan Young, Linear k-Chord Diagrams, arXiv:2004.06921 [math.CO], 2020.
FORMULA
G.f.: Sum_{j>=0} (2*j)! * y^j * (1-(1-z)*y)^(2*j+1) / (j! * 2^j * (1-(1-z)*y^2)^(2*j+1)).
EXAMPLE
Triangle begins:
1;
0, 1;
1, 2, 0;
5, 8, 2, 0;
36, 49, 19, 1 0;
...
For n=2 and k=1 the configurations are (1,4),(2,3) (i.e. a single short pair) and (1,2),(3,4) (i.e. two adjacent short pairs); hence T(2,1) = 2.
MATHEMATICA
CoefficientList[Normal[Series[Sum[y^j*(2*j)!/2^j/j!*((1-y*(1-z))/(1-y^2*(1-z)))^(2*j+1), {j, 0, 20}], {y, 0, 20}]], {y, z}]
PROG
(PARI)
T(n)={my(v=Vec(sum(j=0, n, (2*j)! * x^j * (1-(1-y)*x + O(x*x^n))^(2*j+1) / (j! * 2^j * (1-(1-y)*x^2 + O(x*x^n))^(2*j+1))))); vector(#v, i, Vecrev(v[i], i))}
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, May 25 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Donovan Young, May 25 2020
STATUS
approved