login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334059
Triangle read by rows: T(n,k) is the number of perfect matchings on {1, 2, ..., 2n} with k disjoint strings of adjacent short pairs.
3
1, 0, 1, 1, 2, 0, 5, 8, 2, 0, 36, 49, 19, 1, 0, 329, 414, 180, 22, 0, 0, 3655, 4398, 1986, 344, 12, 0, 0, 47844, 55897, 25722, 5292, 377, 3, 0, 0, 721315, 825056, 384366, 87296, 8746, 246, 0, 0, 0, 12310199, 13856570, 6513530, 1577350, 192250, 9436, 90, 0, 0, 0
OFFSET
0,5
COMMENTS
Number of configurations with k connected components (consisting of domino matchings) in the game of memory played on the path of length 2n, see [Young].
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Donovan Young, Linear k-Chord Diagrams, arXiv:2004.06921 [math.CO], 2020.
FORMULA
G.f.: Sum_{j>=0} (2*j)! * y^j * (1-(1-z)*y)^(2*j+1) / (j! * 2^j * (1-(1-z)*y^2)^(2*j+1)).
EXAMPLE
Triangle begins:
1;
0, 1;
1, 2, 0;
5, 8, 2, 0;
36, 49, 19, 1 0;
...
For n=2 and k=1 the configurations are (1,4),(2,3) (i.e. a single short pair) and (1,2),(3,4) (i.e. two adjacent short pairs); hence T(2,1) = 2.
MATHEMATICA
CoefficientList[Normal[Series[Sum[y^j*(2*j)!/2^j/j!*((1-y*(1-z))/(1-y^2*(1-z)))^(2*j+1), {j, 0, 20}], {y, 0, 20}]], {y, z}]
PROG
(PARI)
T(n)={my(v=Vec(sum(j=0, n, (2*j)! * x^j * (1-(1-y)*x + O(x*x^n))^(2*j+1) / (j! * 2^j * (1-(1-y)*x^2 + O(x*x^n))^(2*j+1))))); vector(#v, i, Vecrev(v[i], i))}
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, May 25 2020
CROSSREFS
Row sums are A001147.
Column k=0 is A278990 (which is also column 0 of A079267).
Sequence in context: A321205 A111352 A173343 * A133446 A011122 A329960
KEYWORD
nonn,tabl
AUTHOR
Donovan Young, May 25 2020
STATUS
approved