login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192885
A071963(n) - n, where A071963(n) is the largest prime factor of p(n), the n-th partition number A000041(n).
4
1, 0, 0, 0, 1, 2, 5, -2, 3, -4, -3, -4, -1, 88, -9, -4, -5, -6, -7, -12, -1, -10, 145, 228, -17, 64, 3, 16, -15, 54, 437, 280, -9, -10, 1197, 6, 17941, 244, 5, -28, 87, 152, 2375, 28, 53, 1042, 195, 20, 6965, 582, 9233, 610, 1, 5184, 5, 172, 963, 102302
OFFSET
0,6
COMMENTS
It appears that if n > 39, then a(n) is positive, i.e., A071963(n) > n. This has been checked up to n = 2500.
Cilleruelo and Luca proved that A071963(n) > log log n for almost all n, a much weaker statement. Earlier Schinzel and Wirsing proved that for all large N the product p(1)*p(2)*...*p(N) has at least C*log N distinct prime factors, for any positive constant C < 1/log 2.
LINKS
A. Schinzel and E. Wirsing, Multiplicative properties of the partition function, Proc. Indian Acad. Sci., Math. Sci. (Ramanujan Birth Centenary Volume), 97 (1987), 297-303; alternative link.
Eric Weisstein's World of Mathematics, Greatest Prime Factor
Eric Weisstein's World of Mathematics, Partition function
FORMULA
a(n) = A006530(A000041(n)) - n
EXAMPLE
There are 77 partitions of 12, and 77 = 7*11, so a(12) = 11 - 12 = -1.
MATHEMATICA
Table[First[Last[FactorInteger[PartitionsP[n]]]] - n, {n, 0, 100}]
PROG
(PARI) a(n)=if(n<2, !n, my(f=factor(numbpart(n))[, 1]); f[#f]-n) \\ Charles R Greathouse IV, Feb 04 2013
CROSSREFS
KEYWORD
sign
AUTHOR
Jonathan Sondow, Aug 16 2011
STATUS
approved