login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199611
Decimal expansion of least x satisfying x+4*cos(x)=0.
3
1, 2, 5, 2, 3, 5, 3, 2, 3, 4, 0, 0, 2, 5, 8, 8, 7, 6, 3, 1, 8, 6, 3, 2, 8, 1, 2, 1, 9, 7, 5, 3, 8, 0, 4, 3, 5, 9, 0, 1, 2, 8, 0, 6, 1, 0, 5, 6, 6, 1, 8, 9, 9, 9, 2, 3, 8, 6, 1, 4, 4, 3, 1, 3, 0, 8, 0, 8, 0, 2, 4, 1, 3, 3, 5, 3, 2, 6, 7, 5, 6, 7, 8, 9, 0, 9, 6, 2, 7, 6, 9, 1, 9, 2, 7, 6, 2, 0, 1
OFFSET
1,2
COMMENTS
See A199597 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -1.25235323400258876318632812197538043590128...
greatest: 3.59530486716154799187760693508341871491...
MATHEMATICA
a = 1; b = 4; c = 0;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110]
RealDigits[r] (* A199611, least of 4 roots *)
r = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110]
RealDigits[r] (* A199612, greatest of 4 roots *)
CROSSREFS
Cf. A199597.
Sequence in context: A132743 A192885 A246904 * A111232 A087892 A078372
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 08 2011
STATUS
approved