The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199614 Decimal expansion of greatest x satisfying x^2+4*x*cos(x)=sin(x). 3
3, 5, 5, 3, 2, 4, 1, 6, 8, 0, 6, 8, 2, 8, 9, 2, 5, 2, 3, 9, 5, 7, 2, 6, 5, 5, 5, 6, 2, 3, 4, 4, 9, 4, 9, 0, 2, 0, 6, 7, 7, 6, 2, 6, 1, 8, 6, 1, 7, 2, 3, 9, 1, 5, 4, 2, 8, 6, 0, 0, 4, 2, 8, 8, 8, 6, 6, 0, 4, 0, 7, 4, 9, 0, 2, 5, 6, 2, 7, 1, 6, 0, 1, 8, 7, 4, 7, 3, 5, 7, 2, 1, 8, 0, 8, 2, 6, 7, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
See A199597 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: -1.077309917524072030339979615126813664791...
greatest: 3.553241680682892523957265556234494902...
MATHEMATICA
a = 1; b = 4; c = 1;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.1, -1.0}, WorkingPrecision -> 110]
RealDigits[r] (* A199613, least of 4 roots *)
r = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110]
RealDigits[r] (* A199614, greatest of 4 roots *)
CROSSREFS
Cf. A199597.
Sequence in context: A320477 A110551 A141334 * A129488 A211023 A279494
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 08 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 13:10 EDT 2024. Contains 372940 sequences. (Running on oeis4.)