login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320477
a(n) = floor(x(n)), where (x(n),y(n)) are defined by the Chirikov "standard map" y(n) = y(n-1) + 2*sin(x(n-1)), x(n) = x(n-1) + y(n), with x(0)=y(0)=1.
1
1, 3, 5, 5, 3, 1, -1, -2, -5, -6, -6, -6, -4, -1, -1, -1, -2, -5, -7, -7, -9, -12, -14, -18, -20, -23, -25, -26, -28, -31, -33, -37, -39, -42, -44, -45, -46, -50, -52, -55, -57, -59, -62, -65, -69, -71, -75, -77, -80, -82, -83, -84, -88, -89, -93, -94, -95
OFFSET
0,2
COMMENTS
The Chirikov map is an example of a nonlinear dynamical system which can exhibit chaotic behavior. Most such maps do not easily lead to integer sequences, but this map does.
Note that some websites reduce x(n) mod 2*Pi, but this version does not.
REFERENCES
H. A. Lauwerier, Two-dimensional iterative maps, Chapter 4 of A. V. Holden, ed., Chaos, Princeton, 1986. See Eq. (4.67).
E. N. Lorenz, The Essence of Chaos, Univ. Washington Press, 1993. See p 191.
LINKS
Roderick V. Jensen, Classical chaos, American Scientist 75.2 (1987): 168-181. See Eq. (2), (3).
EXAMPLE
The initial values of x(n) and y(n) are
1, 3.682941970, 5.335298253, 5.363285286, 3.800190225, 1.013078481, -0.077102958, -1.321337570, -4.503664553, -5.729399487, -5.903312461, -5.335620669, -3.143935907, ...
and
1, 2.682941970, 1.652356283, 0.027987033, -1.563095061, -2.787111744, -1.090181439, -1.244234612, -3.182326983, -1.225734934, -0.173912974, 0.5676917924, 2.191684762, ...
MAPLE
k:=2; M:=120; x[0]:=1; y[0]:=1;
for n from 1 to M do
y[n]:=y[n-1]+k*evalf(sin(x[n-1]));
x[n]:=x[n-1]+y[n];
od:
[seq(x[n], n=0..M)];
[seq(y[n], n=0..M)];
[seq(floor(x[n]), n=0..M)]; # A320477
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Oct 14 2018
STATUS
approved