login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320478 a(n) = round(x(n)), where (x(n),y(n)) are defined by the Chirikov "standard map" y(n) = y(n-1) + 3*sin(x(n-1)), x(n) = x(n-1) + y(n), with x(0)=y(0)=1. 2
1, 5, 5, 3, 1, 3, 5, 5, 1, 0, 0, 1, 2, 6, 10, 12, 12, 11, 8, 7, 10, 11, 9, 8, 10, 10, 8, 9, 11, 10, 8, 9, 12, 11, 9, 8, 10, 10, 8, 9, 11, 10, 7, 6, 6, 5, 2, 1, 4, 4, 2, 2, 5, 4, 1, 0, 1, 5, 6, 8, 13, 18, 21, 26, 35, 42, 47, 52, 60, 67, 72, 78, 86, 91, 96, 104, 112, 117, 121, 128, 137, 145, 154, 163, 172, 183, 196, 211, 225, 238, 247, 259, 274, 287, 297, 310, 326, 339, 350, 358, 368, 377, 386, 397 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The Chirikov map is an example of a nonlinear dynamical system which can exhibit chaotic behavior. Most such maps do not easily lead to integer sequences, but this map does.

Note that some websites reduce x(n) mod 2*Pi, but this version does not.

More than the usual number of terms are shown in order to reach an interesting region of terms.

REFERENCES

H. A. Lauwerier, Two-dimensional iterative maps, Chapter 4 of A. V. Holden, ed., Chaos, Princeton, 1986. See Eq. (4.67).

E. N. Lorenz, The Essence of Chaos, Univ. Washington Press, 1993. See p 191.

LINKS

Table of n, a(n) for n=0..103.

Roderick V. Jensen, Classical chaos, American Scientist 75.2 (1987): 168-181. See Eq. (2), (3).

EXAMPLE

The initial values of x(n) and y(n) are

1, 4.524412954, 5.101672501, 2.903388389, 1.412978211, 2.885285674, 5.118122864, 4.594521097, 1.091734472, 0.251231092, 0.1565174874, 0.5294415308, 2.417519808, 6.292921635, 10.19753198, 12.00781312, 12.22820384, 11.45331980, 7.987282478, ...

and

1, 3.524412954, 0.577259547, -2.198284112, -1.490410178, 1.472307463, 2.232837190, -0.523601767, -3.502786625, -0.840503380, -0.0947136046, 0.3729240434, 1.888078277, 3.875401827, 3.904610349, 1.810281141, 0.220390715, ...

MAPLE

k:=3; M:=120; x[0]:=1; y[0]:=1;

for n from 1 to M do

y[n]:=y[n-1]+k*evalf(sin(x[n-1]));

x[n]:=x[n-1]+y[n];

od:

[seq(x[n], n=0..M)];

[seq(y[n], n=0..M)];

[seq(round(x[n]), n=0..M)]; # A320478

CROSSREFS

Cf. A320472-A320480.

Sequence in context: A332507 A242617 A158349 * A225302 A079384 A308651

Adjacent sequences:  A320475 A320476 A320477 * A320479 A320480 A320481

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Oct 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 17:51 EDT 2021. Contains 345037 sequences. (Running on oeis4.)