login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242617 Decimal expansion of Kuijlaars-Saff constant, a constant related to Tammes' constants, Thomson's electron problem and Fekete points. 4
5, 5, 3, 0, 5, 1, 2, 9, 3, 3, 5, 7, 5, 9, 5, 1, 8, 6, 7, 7, 9, 9, 5, 1, 0, 3, 7, 0, 8, 7, 1, 2, 4, 7, 7, 4, 5, 5, 0, 8, 0, 2, 8, 5, 7, 6, 0, 1, 9, 6, 6, 1, 7, 7, 6, 3, 3, 0, 4, 0, 7, 0, 9, 7, 0, 5, 9, 5, 3, 8, 7, 8, 8, 4, 0, 7, 7, 1, 2, 5, 4, 1, 6, 8, 7, 0, 5, 3, 7, 3, 2, 6, 3, 1, 6, 8, 2, 9, 1, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 8.8 p. 509.

LINKS

Table of n, a(n) for n=0..99.

A. B. J. Kuijlaars and E. B. Saff, Asymptotics for minimal discrete energy on the sphere

Eric Weisstein's MathWorld, Thomson Problem

Wikipedia, Thomson problem

FORMULA

sqrt(3)*sqrt(sqrt(3)/(8*Pi))*zeta(1/2)*(zeta(1/2, 1/3) - zeta(1/2, 2/3)).

EXAMPLE

-0.5530512933575951867799510370871247745508...

MATHEMATICA

c = Sqrt[3]*Sqrt[Sqrt[3]/(8*Pi)]*Zeta[1/2]*(Zeta[1/2, 1/3] - Zeta[1/2, 2/3]); RealDigits[c, 10, 100] // First

PROG

(PARI) sqrt(sqrt(27)/8/Pi)*zeta(1/2)*(zetahurwitz(1/2, 1/3) - zetahurwitz(1/2, 2/3)) \\ Charles R Greathouse IV, Jan 31 2018

CROSSREFS

Cf. A059750, A080865, A242088.

Sequence in context: A287746 A128006 A157703 * A158349 A320478 A225302

Adjacent sequences:  A242614 A242615 A242616 * A242618 A242619 A242620

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, May 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 16:36 EST 2020. Contains 331172 sequences. (Running on oeis4.)