The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199608 Decimal expansion of greatest x satisfying x^2+3*x*cos(x)=2*sin(x). 1
 3, 0, 4, 8, 1, 3, 8, 5, 9, 5, 3, 6, 5, 1, 1, 6, 6, 8, 9, 1, 4, 4, 6, 0, 5, 0, 5, 9, 3, 7, 3, 9, 0, 5, 2, 2, 0, 8, 5, 4, 6, 4, 6, 8, 6, 6, 9, 9, 5, 5, 4, 2, 6, 9, 2, 1, 5, 9, 2, 4, 3, 6, 0, 5, 4, 8, 2, 5, 1, 2, 3, 3, 6, 9, 6, 4, 0, 1, 1, 0, 6, 2, 4, 0, 2, 2, 9, 6, 6, 8, 6, 6, 4, 7, 6, 6, 7, 6, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A199597 for a guide to related sequences. The Mathematica program includes a graph. LINKS Table of n, a(n) for n=1..99. EXAMPLE least: -0.5973392503648539750049736135997669028331... greatest: 3.0481385953651166891446050593739052208... MATHEMATICA a = 1; b = 3; c = 2; f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.6, -.5}, WorkingPrecision -> 110] RealDigits[r] (* A199607, least of 4 roots *) r = x /. FindRoot[f[x] == g[x], {x, 3, 3.1}, WorkingPrecision -> 110] RealDigits[r] (* A199708, greatest of 4 roots *) CROSSREFS Cf. A199597. Sequence in context: A367480 A320373 A303274 * A128178 A255504 A178593 Adjacent sequences: A199605 A199606 A199607 * A199609 A199610 A199611 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 16:37 EDT 2024. Contains 371845 sequences. (Running on oeis4.)