login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320373
Number of parts in all partitions of n with largest multiplicity three.
2
3, 0, 4, 7, 13, 14, 27, 33, 55, 72, 107, 137, 196, 250, 344, 442, 588, 750, 982, 1234, 1591, 1992, 2523, 3135, 3944, 4857, 6035, 7408, 9121, 11109, 13599, 16465, 20004, 24122, 29112, 34927, 41952, 50078, 59836, 71169, 84625, 100219, 118716, 140061, 165225
OFFSET
3,1
LINKS
FORMULA
a(n) ~ log(2) * exp(Pi*sqrt(n/2)) / (Pi * 2^(1/4) * n^(1/4)). - Vaclav Kotesovec, Oct 25 2018
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((l-> [0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
end:
a:= n-> (k-> (b(n$2, k)-b(n$2, k-1))[2])(3):
seq(a(n), n=3..60);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, {0, l[[1]] j} + l][b[n - i j, i - 1, k]], {j, 0, Min[n/i, k]}]]];
a[n_] := With[{k = 3}, (b[n, n, k] - b[n, n, k - 1])[[2]]];
a /@ Range[3, 60] (* Jean-François Alcover, Dec 13 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A213177.
Sequence in context: A355977 A356581 A367480 * A303274 A199608 A128178
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 11 2018
STATUS
approved