login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320373 Number of parts in all partitions of n with largest multiplicity three. 2

%I

%S 3,0,4,7,13,14,27,33,55,72,107,137,196,250,344,442,588,750,982,1234,

%T 1591,1992,2523,3135,3944,4857,6035,7408,9121,11109,13599,16465,20004,

%U 24122,29112,34927,41952,50078,59836,71169,84625,100219,118716,140061,165225

%N Number of parts in all partitions of n with largest multiplicity three.

%H Alois P. Heinz, <a href="/A320373/b320373.txt">Table of n, a(n) for n = 3..5000</a>

%F a(n) ~ log(2) * exp(Pi*sqrt(n/2)) / (Pi * 2^(1/4) * n^(1/4)). - _Vaclav Kotesovec_, Oct 25 2018

%p b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,

%p add((l-> [0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k))))

%p end:

%p a:= n-> (k-> (b(n$2, k)-b(n$2, k-1))[2])(3):

%p seq(a(n), n=3..60);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, {0, l[[1]] j} + l][b[n - i j, i - 1, k]], {j, 0, Min[n/i, k]}]]];

%t a[n_] := With[{k = 3}, (b[n, n, k] - b[n, n, k - 1])[[2]]];

%t a /@ Range[3, 60] (* _Jean-François Alcover_, Dec 13 2020, after _Alois P. Heinz_ *)

%Y Column k=3 of A213177.

%K nonn

%O 3,1

%A _Alois P. Heinz_, Oct 11 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 00:04 EST 2021. Contains 349590 sequences. (Running on oeis4.)