Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Dec 13 2020 09:31:21
%S 3,0,4,7,13,14,27,33,55,72,107,137,196,250,344,442,588,750,982,1234,
%T 1591,1992,2523,3135,3944,4857,6035,7408,9121,11109,13599,16465,20004,
%U 24122,29112,34927,41952,50078,59836,71169,84625,100219,118716,140061,165225
%N Number of parts in all partitions of n with largest multiplicity three.
%H Alois P. Heinz, <a href="/A320373/b320373.txt">Table of n, a(n) for n = 3..5000</a>
%F a(n) ~ log(2) * exp(Pi*sqrt(n/2)) / (Pi * 2^(1/4) * n^(1/4)). - _Vaclav Kotesovec_, Oct 25 2018
%p b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
%p add((l-> [0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
%p end:
%p a:= n-> (k-> (b(n$2, k)-b(n$2, k-1))[2])(3):
%p seq(a(n), n=3..60);
%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, {0, l[[1]] j} + l][b[n - i j, i - 1, k]], {j, 0, Min[n/i, k]}]]];
%t a[n_] := With[{k = 3}, (b[n, n, k] - b[n, n, k - 1])[[2]]];
%t a /@ Range[3, 60] (* _Jean-François Alcover_, Dec 13 2020, after _Alois P. Heinz_ *)
%Y Column k=3 of A213177.
%K nonn
%O 3,1
%A _Alois P. Heinz_, Oct 11 2018