login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320371
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 228, 128, 16, 32, 512, 1612, 1612, 512, 32, 64, 2048, 11396, 19840, 11396, 2048, 64, 128, 8192, 80568, 245060, 245060, 80568, 8192, 128, 256, 32768, 569608, 3027408, 5304988, 3027408, 569608, 32768, 256, 512, 131072
OFFSET
1,2
COMMENTS
Table starts
...1......2........4..........8............16..............32................64
...2......8.......32........128...........512............2048..............8192
...4.....32......228.......1612.........11396...........80568............569608
...8....128.....1612......19840........245060.........3027408..........37398884
..16....512....11396.....245060.......5304988.......114844160........2486026176
..32...2048....80568....3027408.....114844160......4358279956......165355751224
..64...8192...569608...37398884....2486026176....165355751224....10993944343316
.128..32768..4027076..462004160...53815748216...6274017360108...731023916987668
.256.131072.28471056.5707334644.1164968680976.238053099337172.48608312646628816
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 8*a(n-1) -7*a(n-2) +3*a(n-3)
k=4: [order 9]
k=5: [order 25] for n>26
k=6: [order 70] for n>73
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..1..0
..0..0..1..1. .1..1..0..0. .1..1..1..1. .1..1..1..0. .0..0..0..1
..1..1..0..0. .1..1..0..1. .0..1..1..1. .1..1..0..0. .0..0..1..1
..1..0..0..0. .0..0..0..0. .0..0..0..1. .0..1..0..0. .0..1..0..1
..1..1..1..0. .0..1..0..1. .1..0..0..0. .1..0..1..1. .1..0..0..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Sequence in context: A299740 A316815 A299661 * A317565 A302741 A300215
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 11 2018
STATUS
approved