login
A300215
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 228, 128, 16, 32, 512, 1651, 1651, 512, 32, 64, 2048, 11965, 22194, 11965, 2048, 64, 128, 8192, 86775, 298600, 298600, 86775, 8192, 128, 256, 32768, 629440, 4023881, 7452385, 4023881, 629440, 32768, 256, 512, 131072
OFFSET
1,2
COMMENTS
Table starts
...1......2........4..........8............16..............32
...2......8.......32........128...........512............2048
...4.....32......228.......1651.........11965...........86775
...8....128.....1651......22194........298600.........4023881
..16....512....11965.....298600.......7452385.......186427449
..32...2048....86775....4023881.....186427449......8664017314
..64...8192...629440...54246856....4666136435....402932952786
.128..32768..4566023..731384148..116802113451..18741286700978
.256.131072.33122989.9861234001.2923892905217.871742323938453
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: [order 8]
k=4: [order 24]
k=5: [order 89]
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0
..0..1..0..1. .0..0..1..1. .1..1..1..1. .1..1..0..1. .0..1..0..0
..0..0..1..0. .1..0..1..0. .1..0..1..1. .1..1..0..1. .1..1..1..0
..0..1..1..0. .0..0..1..0. .0..0..0..0. .0..0..0..1. .0..1..1..1
..0..0..1..1. .0..0..0..0. .0..0..1..0. .1..0..0..0. .0..0..1..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Sequence in context: A320371 A317565 A302741 * A300804 A303456 A301443
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 28 2018
STATUS
approved