The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A355977 Decimal expansion of 2*zeta(3/2)^4/(3*sqrt(2*Pi)*zeta(3)). 1
 1, 0, 3, 0, 4, 7, 1, 7, 4, 3, 9, 5, 0, 0, 1, 3, 8, 7, 0, 9, 9, 6, 8, 8, 9, 2, 1, 4, 1, 1, 7, 1, 7, 6, 3, 5, 7, 0, 4, 3, 7, 3, 5, 9, 9, 8, 0, 2, 0, 7, 9, 4, 6, 6, 2, 3, 8, 5, 0, 4, 5, 3, 5, 9, 2, 8, 5, 1, 6, 6, 8, 4, 5, 2, 7, 4, 3, 8, 0, 3, 2, 8, 6, 7, 8, 5, 4, 5, 3, 3, 2, 6, 9, 8, 5, 4, 9, 0, 3, 0, 8, 0, 6, 8, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS The constant c_2 in the asymptotic mean of the squared error of the second moment of the Riemann zeta function on the critical line Re(z) = 1/2: Integral_{t=2..T} E(t)^2 dt ~ c_2 * T^(3/2), where E(t) = Integral_{t=0..T} |zeta(1/2 + i*t)|^2 dt - (log(T) - c) * T, and c is A355976. REFERENCES Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 177. LINKS Table of n, a(n) for n=2..106. D. R. Heath-Brown, The mean value theorem for the Riemann zeta-function, Mathematika, Vol. 25, No. 2 (1978), pp. 177-184. Tom Meurman, On the mean square of the Riemann zeta-function, The Quarterly Journal of Mathematics, Vol. 38, No. 3 (1987), pp. 337-343. FORMULA Equals (2/(3*sqrt(2*Pi)) * Sum_{k>=1} d(k)^2/k^(3/2), where d(k) = A000005(k) is the number of divisors of k. EXAMPLE 10.30471743950013870996889214117176357043735998020794... MATHEMATICA RealDigits[2*Zeta[3/2]^4/(3*Sqrt[2*Pi]*Zeta[3]), 10, 100][[1]] CROSSREFS Cf. A000005, A002117, A019727, A078434, A355976. Sequence in context: A190181 A145092 A210878 * A356581 A367480 A320373 Adjacent sequences: A355974 A355975 A355976 * A355978 A355979 A355980 KEYWORD nonn,cons AUTHOR Amiram Eldar, Jul 22 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 04:14 EDT 2024. Contains 371918 sequences. (Running on oeis4.)