login
A355976
Decimal expansion of 1 + log(2*Pi) - 2*gamma, where gamma is Euler's constant (A001620).
1
1, 6, 8, 3, 4, 4, 5, 7, 3, 6, 6, 0, 6, 2, 7, 9, 7, 6, 2, 3, 4, 7, 6, 3, 5, 2, 9, 2, 6, 4, 6, 4, 3, 0, 4, 1, 7, 6, 3, 8, 4, 7, 6, 2, 7, 5, 3, 9, 5, 7, 1, 9, 6, 2, 8, 0, 2, 2, 7, 6, 8, 6, 1, 1, 1, 9, 5, 7, 9, 5, 9, 3, 8, 2, 9, 9, 1, 9, 1, 4, 5, 3, 5, 1, 5, 5, 9, 2, 4, 7, 0, 6, 8, 8, 4, 1, 4, 8, 9, 6, 2, 1, 4, 7, 4
OFFSET
1,2
COMMENTS
The constant c in the asymptotic formula for the second moment of the Riemann zeta function on the critical line Re(z) = 1/2: Integral_{t=0..T} |zeta(1/2 + i*t)|^2 dt ~ (log(T) - c) * T.
REFERENCES
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 177.
LINKS
F. V. Atkinson, The mean value of the zeta-function on the critical line, The Quarterly Journal of Mathematics, Vol. os-10, No. 1 (1939), pp. 122-128.
A. E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function, Proceedings of the London Mathematical Society, Vol. s2-27, No. 1 (1928), pp. 273-300.
E. C. Titchmarsh, On van der Corput's method and the zeta-function of Riemann (V), The Quarterly Journal of Mathematics, Vol. os-5, No. 1 (1934), pp. 195-210.
EXAMPLE
1.68344573660627976234763529264643041763847627539571...
MATHEMATICA
RealDigits[1 + Log[2*Pi] - 2*EulerGamma, 10, 100][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jul 22 2022
STATUS
approved