login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 1 + log(2*Pi) - 2*gamma, where gamma is Euler's constant (A001620).
1

%I #6 Jul 22 2022 04:31:33

%S 1,6,8,3,4,4,5,7,3,6,6,0,6,2,7,9,7,6,2,3,4,7,6,3,5,2,9,2,6,4,6,4,3,0,

%T 4,1,7,6,3,8,4,7,6,2,7,5,3,9,5,7,1,9,6,2,8,0,2,2,7,6,8,6,1,1,1,9,5,7,

%U 9,5,9,3,8,2,9,9,1,9,1,4,5,3,5,1,5,5,9,2,4,7,0,6,8,8,4,1,4,8,9,6,2,1,4,7,4

%N Decimal expansion of 1 + log(2*Pi) - 2*gamma, where gamma is Euler's constant (A001620).

%C The constant c in the asymptotic formula for the second moment of the Riemann zeta function on the critical line Re(z) = 1/2: Integral_{t=0..T} |zeta(1/2 + i*t)|^2 dt ~ (log(T) - c) * T.

%D Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 177.

%H F. V. Atkinson, <a href="https://doi.org/10.1093/qmath/os-10.1.122">The mean value of the zeta-function on the critical line</a>, The Quarterly Journal of Mathematics, Vol. os-10, No. 1 (1939), pp. 122-128.

%H A. E. Ingham, <a href="https://doi.org/10.1112/plms/s2-27.1.273">Mean-value theorems in the theory of the Riemann zeta-function</a>, Proceedings of the London Mathematical Society, Vol. s2-27, No. 1 (1928), pp. 273-300.

%H E. C. Titchmarsh, <a href="https://doi.org/10.1093/qmath/os-5.1.195">On van der Corput's method and the zeta-function of Riemann (V)</a>, The Quarterly Journal of Mathematics, Vol. os-5, No. 1 (1934), pp. 195-210.

%e 1.68344573660627976234763529264643041763847627539571...

%t RealDigits[1 + Log[2*Pi] - 2*EulerGamma, 10, 100][[1]]

%Y Cf. A001620, A053510, A355977.

%K nonn,cons

%O 1,2

%A _Amiram Eldar_, Jul 22 2022