login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079859
a(n) = n*2^(n-4).
8
4, 10, 24, 56, 128, 288, 640, 1408, 3072, 6656, 14336, 30720, 65536, 139264, 294912, 622592, 1310720, 2752512, 5767168, 12058624, 25165824, 52428800, 109051904, 226492416, 469762048, 973078528, 2013265920, 4160749568, 8589934592, 17716740096, 36507222016
OFFSET
4,1
COMMENTS
a(n) = the number of occurrences of 3s in the palindromic compositions of m = 2*n-1 = the number of occurrences of 4s in the palindromic compositions of k = 2*n.
This sequence is part of a family of sequences, namely R(n,k), the number of ks in palindromic compositions of n. See also A057711, A001792, A078836, A079861, A079862, A079863. General formula: R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2k.
Number of 2 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (10;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in same relative order as those in the triple (x,y,z). - Sergey Kitaev, Nov 11 2004
a(n) appears to be the coefficient of Pi^n in the closed-form expression for the expected value of X^n, where X is the area of a spherical triangle formed by three random points on the unit sphere. (The n*2^(n-4) formula applies when n=2,3 as well, and produces fractional coefficients.) - Drake Thomas, Jan 24 2021
LINKS
Phyllis Chinn, Ralph Grimaldi and Silvia Heubach, The frequency of summands of a particular size in Palindromic Compositions, Ars Combin., Vol. 69 (2003), pp. 65-78.
Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 4 (2004), A21, 20pp.
Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004).
FORMULA
O.g.f.: 2*x^4*(2-3*x)/(1-2*x)^2. a(n) = 2*A045623(n-3). - R. J. Mathar, Jun 13 2008
a(n) = 4*a(n-1) - 4*a(n-2) for n>5. - Colin Barker, Sep 29 2015
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=4} 1/a(n) = 16*log(2) - 32/3.
Sum_{n>=4} (-1)^n/a(n) = 20/3 - 16*log(3/2). (End)
E.g.f.: x*(exp(2*x) - 1 - 2*x - 2*x^2)/8. - Stefano Spezia, Apr 06 2021
EXAMPLE
a(4)=4 since the palindromic compositions of 7 that contain a 3 are 2+3+2, 1+1+3+1+1 and 3+1+3, for a total of 4 3s. The palindromic compositions of 8 that contain a 4 are 2+4+2, 1+1+4+1+1 and 4+4.
MATHEMATICA
Table[i*2^(i - 4), {i, 4, 50}]
PROG
(Magma) [n*2^(n-4) : n in [4..40]]; // Vincenzo Librandi, Sep 22 2011
(PARI) Vec(-2*x^4*(3*x-2)/(2*x-1)^2 + O(x^50)) \\ Colin Barker, Sep 29 2015
(PARI) a(n) = n*2^(n-4);
vector(40, n, a(n+3)) \\ Altug Alkan, Sep 29 2015
CROSSREFS
Main diagonal of A049089.
Sequence in context: A052252 A087447 A129953 * A298802 A118871 A019494
KEYWORD
easy,nonn
AUTHOR
Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003
STATUS
approved