OFFSET
12,1
COMMENTS
This sequence is part of a family of sequences, namely R(n,k), the number of ks in palindromic compositions of n. See also A057711, A001792, A078836, A079861, A079862. General formula: R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2k.
LINKS
Colin Barker, Table of n, a(n) for n = 12..1000
P. Chinn, R. Grimaldi and S. Heubach, The frequency of summands of a particular size in Palindromic Compositions, Ars Combin. 69 (2003), 65-78.
Index entries for linear recurrences with constant coefficients, signature (4,-4).
FORMULA
a(n) = (n+22)*2^(n-12).
From Colin Barker, Sep 29 2015: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) for n>13.
G.f.: -2*x^12*(33*x-17) / (2*x-1)^2.
(End)
EXAMPLE
a(12) = 34 since the palindromic compositions of 23 that contain a 11 are 11+1+11 and the 32 compositions of the form c+11+(reverse of c), where c represents a composition of 6.
MATHEMATICA
Table[(22 + i)*2^(i - 12), {i, 12, 50}]
LinearRecurrence[{4, -4}, {34, 70}, 30] (* Harvey P. Dale, Jan 30 2017 *)
PROG
(PARI) Vec(-2*x^12*(33*x-17)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Sep 29 2015
(PARI) a(n)=(n+22)<<(n-12) \\ Charles R Greathouse IV, Sep 29 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003
STATUS
approved