login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079863
a(n) is the number of occurrences of 11s in the palindromic compositions of m=2*n-1 = the number of occurrences of 12s in the palindromic compositions of m=2*n.
7
34, 70, 144, 296, 608, 1248, 2560, 5248, 10752, 22016, 45056, 92160, 188416, 385024, 786432, 1605632, 3276800, 6684672, 13631488, 27787264, 56623104, 115343360, 234881024, 478150656, 973078528, 1979711488, 4026531840, 8187281408, 16642998272, 33822867456
OFFSET
12,1
COMMENTS
This sequence is part of a family of sequences, namely R(n,k), the number of ks in palindromic compositions of n. See also A057711, A001792, A078836, A079861, A079862. General formula: R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2k.
FORMULA
a(n) = (n+22)*2^(n-12).
From Colin Barker, Sep 29 2015: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) for n>13.
G.f.: -2*x^12*(33*x-17) / (2*x-1)^2.
(End)
EXAMPLE
a(12) = 34 since the palindromic compositions of 23 that contain a 11 are 11+1+11 and the 32 compositions of the form c+11+(reverse of c), where c represents a composition of 6.
MATHEMATICA
Table[(22 + i)*2^(i - 12), {i, 12, 50}]
LinearRecurrence[{4, -4}, {34, 70}, 30] (* Harvey P. Dale, Jan 30 2017 *)
PROG
(PARI) Vec(-2*x^12*(33*x-17)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Sep 29 2015
(PARI) a(n)=(n+22)<<(n-12) \\ Charles R Greathouse IV, Sep 29 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003
STATUS
approved