login
A019491
Numbers n for which number of distinct prime divisors of binomial(n,k) has local minimum at k = n/2.
3
10, 20, 27, 28, 29, 34, 38, 44, 45, 46, 51, 52, 53, 54, 60, 61, 62, 69, 70, 74, 77, 78, 79, 81, 82, 87, 88, 92, 93, 94, 95, 101, 102, 103, 104, 105, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 120, 122, 124, 125, 126, 127, 130, 138, 139, 140
OFFSET
1,1
LINKS
EXAMPLE
If n=28 then {r(C(28,k))}={0,2,3,4,4,5,6,6,6,7,8,7,7,7,6,7,7,7,8,7,6,6,6,5,4,4,3,2,0}. Thus r(C(28,14))=6 is local minimum, while r(C(28,10))=8 is maximum.
MATHEMATICA
Select[Range[140], MatchQ[PrimeNu[Binomial[#, Range[Floor[#/2], #]]], {(x_) .., y_, ___} /; x < y]&] (* Jean-François Alcover, Dec 10 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Data corrected by Jean-François Alcover, Dec 10 2016
STATUS
approved