

A229304


Numbers n such that A031971(1806*n) <> n (mod 1806*n).


16



10, 20, 26, 30, 40, 50, 52, 55, 57, 58, 60, 70, 78, 80, 90, 100, 104, 110, 114, 116, 120, 130, 136, 140, 150, 155, 156, 160, 165, 170, 171, 174, 180, 182, 190, 200, 208, 210, 220, 222, 228, 230, 232, 234, 240, 250, 253, 260, 270, 272, 275, 280, 285, 286, 290
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Complement of A229300.
The asymptotic density is in [0.1921, 0.212].
If n is in A then k*n is in A for all natural number k.
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]


LINKS

Table of n, a(n) for n=1..55.
Jose María Grau, A. M. OllerMarcen, and J. Sondow, On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n


MATHEMATICA

g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], !g[1806*#] == # &]


CROSSREFS

Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
Sequence in context: A320522 A072592 A229305 * A101869 A015872 A019491
Adjacent sequences: A229301 A229302 A229303 * A229305 A229306 A229307


KEYWORD

nonn


AUTHOR

José María Grau Ribas, Sep 19 2013


STATUS

approved



