login
A109975
Second differences of A045623, prefixed by an initial 1.
3
1, 2, 4, 9, 20, 44, 96, 208, 448, 960, 2048, 4352, 9216, 19456, 40960, 86016, 180224, 376832, 786432, 1638400, 3407872, 7077888, 14680064, 30408704, 62914560, 130023424, 268435456, 553648128, 1140850688, 2348810240
OFFSET
0,2
COMMENTS
Binomial transform of [1,1,1,2,1,3,1,...]. [From Paul Barry, Mar 18 2009]
FORMULA
G.f.: (1-2x+x^3)/(1-2x)^2. [From Paul Barry, Mar 18 2009]
a(n) = 2^(n-3)*(n+6) with n>1, a(0)=1, a(1)=2 (see the PARI code). - Bruno Berselli, Jun 27 2012
G.f.: Q(0)/(1-x), where Q(k)= 1 + (k+1)*x/(1 - x - x*(1-x)/(x + (k+1)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 25 2013
MATHEMATICA
CoefficientList[Series[(1-2x+x^3)/(1-2x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 27 2012 *)
PROG
(PARI) a(n)=(n+6)<<(n-3)+(n<2) \\ Charles R Greathouse IV, Jun 01 2011
(Magma) I:=[1, 2, 4, 9]; [n le 4 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 27 2012
CROSSREFS
Essentially a duplicate of A034007.
Sequence in context: A179744 A266930 A034007 * A129891 A130587 A129988
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 07 2007
STATUS
approved