login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129891
Sum of coefficients of polynomials defined in comments lines.
5
1, 2, 4, 9, 20, 44, 96, 209, 455, 991, 2159, 4704, 10249, 22330, 48651, 105997, 230938, 503150, 1096225, 2388372, 5203604, 11337218, 24700671, 53815949, 117250109, 255455647, 556567394, 1212606837, 2641935832, 5756049469, 12540844137
OFFSET
0,2
COMMENTS
At the same time that I introduced the polynomials P(n,x) defined by P(0,x)=1 and for n>0, P(n,x) = (-1)^n/(n+1) + x*Sum_{ i=0..n-1 } ( (-1)^i/(i+1) )*P(n-1-i,x) (Gazette des Mathematiciens 1992), I gave the generalization P(0,x) = u(0), P(n,x) = u(n) + x*Sum_{ i=0..n-1 } u(i)*P(n-1-i,x).
For u(n), n>=0, = 1 1 1 2 3 4 5 6 7 8 ... the array of coefficients of the polynomials P(n,x) is:
1
1 1
1 2 1
2 3 3 1
3 6 6 4 1
4 11 13 10 5 1
5 18 27 24 15 6 1
6 28 51 55 40 21 7 1
whose row sums are the present sequence.
The alternating row sums are 1 0 0 1 0 0 0 -1 ...
The antidiagonal sums are 1 1 2 4 7 13 23 41 73 ...
The first column of the inverse matrix is 1 -1 1 -2 5 -11 25 -63 ...
REFERENCES
Paul Curtz, Gazette des Mathématiciens, 1992, no. 52, p. 44.
LINKS
FORMULA
G.f.: (1-x+x^3)/(1-3*x+2*x^2-x^4). - Alois P. Heinz, Oct 14 2009
MAPLE
a:= n-> (Matrix([1, 1, 0, 1]). Matrix(4, (i, j)-> if i=j-1 then 1 elif j=1 then [3, -2, 0, 1][i] else 0 fi)^n)[1, 1]:
seq(a(n), n=0..50); # Alois P. Heinz, Oct 14 2009
MATHEMATICA
u[n_ /; n < 3] = 1; u[n_] := n-1;
p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[ u[i]*p[n-i-1][x] , {i, 0, n-1}] // Expand;
row[n_] := CoefficientList[ p[n][x], x];
Table[row[n] // Total, {n, 0, 30}] (* Jean-François Alcover, Oct 02 2012 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^3)/(1-3*x+2*x^2-x^4) )); // G. C. Greubel, Oct 24 2023
(SageMath)
def A129891_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x+x^3)/(1-3*x+2*x^2-x^4) ).list()
A129891_list(40) # G. C. Greubel, Oct 24 2023
CROSSREFS
Sums of coefficients of polynomials defined in A140530.
Sequence in context: A266930 A034007 A109975 * A130587 A129988 A035530
KEYWORD
nonn
AUTHOR
Paul Curtz, Jun 04 2007
EXTENSIONS
Edited by N. J. A. Sloane, Jul 05 2007
More terms from Alois P. Heinz, Oct 14 2009
STATUS
approved