login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179741
a(n) = (2*n+1)*(6*n-1).
2
-1, 15, 55, 119, 207, 319, 455, 615, 799, 1007, 1239, 1495, 1775, 2079, 2407, 2759, 3135, 3535, 3959, 4407, 4879, 5375, 5895, 6439, 7007, 7599, 8215, 8855, 9519, 10207, 10919, 11655, 12415, 13199, 14007, 14839, 15695, 16575, 17479, 18407
OFFSET
0,2
FORMULA
a(n) = a(n-1) + 24*n + 16.
a(n) = 2*a(n-1) - a(n-2) + 16.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A077591(n+1) + A061037(2*n-1).
From Bruno Berselli, Jan 25 2011: (Start)
G.f.: (-1 +18*x +7*x^2)/(1-x)^3.
a(n) = A184005(4*n) (n>0). (End)
E.g.f.: (-1 + 16*x + 12*x^2)*exp(x). - G. C. Greubel, Jul 22 2017
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = (3*log(3) - Pi*sqrt(3) + 4)/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = (3*Pi - 2*sqrt(3)*log(sqrt(3)+2) - 4)/16. (End)
MATHEMATICA
Table[12n^2+4n-1, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {-1, 15, 55}, 40] (* Harvey P. Dale, Dec 17 2013 *)
PROG
(Magma) [(2*n+1)*(6*n-1): n in [0..50]]; // Vincenzo Librandi, Aug 04 2011
(PARI) a(n)=(2*n+1)*(6*n-1) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Jan 10 2011
EXTENSIONS
Edited by N. J. A. Sloane, Jan 12 2011
STATUS
approved