OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = a(n-1) + 24*n + 16.
a(n) = 2*a(n-1) - a(n-2) + 16.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Bruno Berselli, Jan 25 2011: (Start)
G.f.: (-1 +18*x +7*x^2)/(1-x)^3.
a(n) = A184005(4*n) (n>0). (End)
E.g.f.: (-1 + 16*x + 12*x^2)*exp(x). - G. C. Greubel, Jul 22 2017
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = (3*log(3) - Pi*sqrt(3) + 4)/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = (3*Pi - 2*sqrt(3)*log(sqrt(3)+2) - 4)/16. (End)
MATHEMATICA
Table[12n^2+4n-1, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {-1, 15, 55}, 40] (* Harvey P. Dale, Dec 17 2013 *)
PROG
(Magma) [(2*n+1)*(6*n-1): n in [0..50]]; // Vincenzo Librandi, Aug 04 2011
(PARI) a(n)=(2*n+1)*(6*n-1) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Jan 10 2011
EXTENSIONS
Edited by N. J. A. Sloane, Jan 12 2011
STATUS
approved