

A179738


Let x,y be odd numbers and symbol "m<+>k" be defined as in A179382. Consider sequence x<+>y, x<+>(3*(x<+>y)), x<+>(x<+>(3*(x<+>y))), x<+>(3*(x<+>(x<+>(3*(x<+>y)))),... ; a(n) is the smallest period in case x=2*n1,y=1.


3



1, 2, 3, 1, 4, 8, 2, 4, 8, 4, 2, 2, 1, 4, 12, 4, 2, 26
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


LINKS

Table of n, a(n) for n=2..19.


EXAMPLE

Let n=6, 2*n1=11. We have 11<+>1=3, 11<+>(3*3)=5, 11<+>5=1, 11<+>(3*1)=7, 11<+>7=9, 11<+>(3*9)=19, 11<+>19=15, 11<+>(3*15)=7, 11<+>7=9,... Thus we have eventually periodic sequence with the smallest period 4 (with elements 7,9,19,15). Thus a(6)=4.


CROSSREFS

Cf. A179382 A179480 A179686
Sequence in context: A258579 A263757 A021436 * A187889 A118800 A200139
Adjacent sequences: A179735 A179736 A179737 * A179739 A179740 A179741


KEYWORD

nonn,uned


AUTHOR

Vladimir Shevelev, Jul 25 2010


STATUS

approved



