login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2*n+1)*(6*n-1).
2

%I #39 Oct 08 2023 04:45:44

%S -1,15,55,119,207,319,455,615,799,1007,1239,1495,1775,2079,2407,2759,

%T 3135,3535,3959,4407,4879,5375,5895,6439,7007,7599,8215,8855,9519,

%U 10207,10919,11655,12415,13199,14007,14839,15695,16575,17479,18407

%N a(n) = (2*n+1)*(6*n-1).

%H Vincenzo Librandi, <a href="/A179741/b179741.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = a(n-1) + 24*n + 16.

%F a(n) = 2*a(n-1) - a(n-2) + 16.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

%F a(n) = A077591(n+1) + A061037(2*n-1).

%F From _Bruno Berselli_, Jan 25 2011: (Start)

%F G.f.: (-1 +18*x +7*x^2)/(1-x)^3.

%F a(n) = A184005(4*n) (n>0). (End)

%F E.g.f.: (-1 + 16*x + 12*x^2)*exp(x). - _G. C. Greubel_, Jul 22 2017

%F From _Amiram Eldar_, Oct 08 2023: (Start)

%F Sum_{n>=1} 1/a(n) = (3*log(3) - Pi*sqrt(3) + 4)/16.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (3*Pi - 2*sqrt(3)*log(sqrt(3)+2) - 4)/16. (End)

%t Table[12n^2+4n-1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{-1,15,55},40] (* _Harvey P. Dale_, Dec 17 2013 *)

%o (Magma) [(2*n+1)*(6*n-1): n in [0..50]]; // _Vincenzo Librandi_, Aug 04 2011

%o (PARI) a(n)=(2*n+1)*(6*n-1) \\ _Charles R Greathouse IV_, Jun 17 2017

%Y Cf. A061037, A077591, A184005.

%K sign,easy

%O 0,2

%A _Paul Curtz_, Jan 10 2011

%E Edited by _N. J. A. Sloane_, Jan 12 2011