OFFSET
1,1
COMMENTS
Different from A000229 because here the non-coprime quadratic nonresidues are ignored. For example, a(2) = 4 because although 2 is a quadratic nonresidue modulo 4, it is not coprime to 4.
EXAMPLE
For k = 118 we have: 2 is not coprime to 118, 11^2 == 3 (mod 118), 51^2 == 5 (mod 118), 19^2 == 7 (mod 118) and 11 is a quadratic nonresidue modulo 118. For all k < 118, at least one of 2, 3, 5, 7 is coprime quadratic nonresidue modulo k, so a(5) = 118.
PROG
(PARI) b(p, k) = gcd(p, k)==1&&!issquare(Mod(p, k))
a(n) = my(k=1); while(sum(i=1, n-1, b(prime(i), k))!=0 || !b(prime(n), k), k++); k
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jianing Song, Feb 19 2019
EXTENSIONS
a(17)-a(23) from Daniel Suteu, Feb 24 2019
a(24)-a(25) from Jinyuan Wang, Mar 08 2019
STATUS
approved