login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of 1/(1 - Sum_{d|k} x^d).
0

%I #7 Feb 21 2019 04:17:22

%S 1,1,1,1,1,1,1,1,2,1,1,1,1,3,1,1,1,2,2,5,1,1,1,1,3,3,8,1,1,1,2,1,6,4,

%T 13,1,1,1,1,4,1,10,6,21,1,1,1,2,1,7,2,18,9,34,1,1,1,1,3,1,13,3,31,13,

%U 55,1,1,1,2,2,6,1,25,4,55,19,89,1,1,1,1,3,3,10,1,46,5,96,28,144,1

%N Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of 1/(1 - Sum_{d|k} x^d).

%C A(n,k) is the number of compositions (ordered partitions) of n into divisors of k.

%F G.f. of column k: 1/(1 - Sum_{d|k} x^d).

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 1, 2, 1, 2, ...

%e 1, 3, 2, 3, 1, 4, ...

%e 1, 5, 3, 6, 1, 7, ...

%e 1, 8, 4, 10, 2, 13, ...

%t Table[Function[k, SeriesCoefficient[1/(1 - Sum[x^d, {d, Divisors[k]}]), {x, 0, n}]][i - n + 1], {i, 0, 12}, {n, 0, i}] // Flatten

%Y Columns k=1..7 give A000012, A000045 (for n > 0), A000930, A060945, A003520, A079958, A005709.

%Y Cf. A100346, A214575.

%K nonn,tabl

%O 0,9

%A _Ilya Gutkovskiy_, Feb 19 2019