login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175010 Triangle generated from INVERT transforms of variants of A080995. 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 4, 6, 1, 1, 1, 1, 1, 2, 6, 9, 1, 1, 1, 1, 1, 1, 4, 8, 12, 1, 1, 1, 1, 1, 1, 2, 6, 12, 16, 1, 1, 1, 1, 1, 1, 1, 4, 8, 19, 18, 1, 1, 1, 1, 1, 1, 1, 2, 6, 11, 28, 23 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,10

COMMENTS

Row sums = A000041 starting with offset 1: (1, 1, 2, 3, 5, 7, 11, 15, ...).

The INVERTi transform of A000041 starting with offset 1 follows from the definition of the INVERT transform, given 1/p(x) = A010815.

LINKS

Table of n, a(n) for n=1..78.

FORMULA

Given the INVERTi transform of the partition numbers starting with offset 1 = a signed variant of A080995 such that Q = (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, ...).

Construct an array in which k-th row (k=1,2,3,...) = the INVERT transform of Q(x^k), i.e., where polcoeff Q(x) is interleaved with 0,1,2,3,... zeros.

Take finite differences of the array terms starting with the last "1" going from the bottom to top, becoming rows of triangle A175010.

EXAMPLE

First few rows of the array:

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101,

1, 1, 2, 3, 4,  6,  9, 13, 18, 26, 38, 54,  76,

1, 1, 1, 2, 3,  4,  5,  7, 10, 14, 19, 26,  35,

1, 1, 1, 1, 2,  3,  4,  5,  6,  8, 11, 15,  20,

1, 1, 1, 1, 1,  2,  3,  4,  5,  6,  7,  9,  12,

1, 1, 1, 1, 1,  1,  2,  3,  4,  5,  6,  7,   8,

...

Taking finite differences from the bottom starting with the top "1", we obtain rows of the triangle:

1;

1, 1;

1, 1, 1;

1, 1, 1, 2;

1, 1, 1, 1, 3;

1, 1, 1, 1, 2, 5;

1, 1, 1, 1, 1, 4, 6;

1, 1, 1, 1, 1, 2, 6, 9;

1, 1, 1, 1, 1, 1, 4, 8, 12;

1, 1, 1, 1, 1, 1, 2, 6, 12, 16;

1, 1, 1, 1, 1, 1, 1, 4,  8, 19, 18;

1, 1, 1, 1, 1, 1, 1, 2,  6, 11, 28, 23;

1, 1, 1, 1, 1, 1, 1, 1,  4,  8, 15, 41, 25;

1, 1, 1, 1, 1, 1, 1, 1,  2,  6, 10, 22, 61, 26;

...

Example: Row 2 = INVERT transform of Q(x^2), (i.e., Q(x) interleaved with one zero between terms).

CROSSREFS

Cf. A000041, A080995, A010815.

Sequence in context: A158464 A056926 A137773 * A107454 A250261 A063669

Adjacent sequences:  A175007 A175008 A175009 * A175011 A175012 A175013

KEYWORD

nonn,tabl

AUTHOR

Gary W. Adamson, Apr 03 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 14:44 EDT 2021. Contains 347586 sequences. (Running on oeis4.)