login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250260
The number of 5-alternating permutations of [n].
3
1, 1, 1, 2, 3, 4, 5, 29, 133, 412, 1041, 2300, 22991, 170832, 822198, 3114489, 10006375, 141705439, 1457872978, 9522474417, 48094772656, 202808749375, 3716808948931, 48860589990687, 403131250565618, 2545098156762649, 13287626090593750
OFFSET
0,4
COMMENTS
A sequence a(1), a(2),... is called k-alternating if a(i) > a(i+1) iff i=1 (mod k).
LINKS
R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240, page 17.
MAPLE
# dowupP defined in A250259.
A250260 :=proc(n)
downupP(n, 4) ;
end proc:
seq(A250260(n), n=0..20) ;
# second Maple program:
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=1, add(b(u-j, o+j-1, irem(t+1, 5)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 5)), j=1..o)))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Nov 15 2014
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, If[t == 1, Sum[b[u-j, o+j-1, Mod[t+1, 5]], {j, 1, u}], Sum[b[u+j-1, o-j, Mod[t+1, 5]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A065619 (2-alternating), A249402 (3-alternating), A250259 (4-alternating).
Column k=5 of A250261.
Sequence in context: A037399 A220891 A220890 * A345306 A086130 A024636
KEYWORD
nonn
AUTHOR
R. J. Mathar, Nov 15 2014
STATUS
approved