OFFSET
0,4
COMMENTS
A sequence a(1), a(2),... is called k-alternating if a(i) > a(i+1) iff i=1 (mod k).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240, page 17.
MAPLE
# dowupP defined in A250259.
A250260 :=proc(n)
downupP(n, 4) ;
end proc:
seq(A250260(n), n=0..20) ;
# second Maple program:
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=1, add(b(u-j, o+j-1, irem(t+1, 5)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 5)), j=1..o)))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Nov 15 2014
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, If[t == 1, Sum[b[u-j, o+j-1, Mod[t+1, 5]], {j, 1, u}], Sum[b[u+j-1, o-j, Mod[t+1, 5]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Nov 15 2014
STATUS
approved